Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/6931

Les progressions arithmétiques dans les nombres entiers

Thesis or Dissertation
Thumbnail
Poirier_Antoine_2012_memoire.pdf (335.7Kb)
2012-02 (degree granted: 2012-03-01)
Author(s)
Poirier, Antoine
Advisor(s)
Granville, Andrew
Level
Master's
Discipline
Mathématiques
Keywords
  • Combinatoire additive
  • Progressions arithmétiques
  • Points de réseau
  • Points entiers contenu dans des sphères
  • Additive combinatorics
  • Arithmetic progressions
  • Lattice theory
  • Integer points in large spheres
  • Mathematics / Mathématiques (UMI : 0405)
Abstract(s)
Le sujet de cette thèse est l'étude des progressions arithmétiques dans les nombres entiers. Plus précisément, nous nous intéressons à borner inférieurement v(N), la taille du plus grand sous-ensemble des nombres entiers de 1 à N qui ne contient pas de progressions arithmétiques de 3 termes. Nous allons donc construire de grands sous-ensembles de nombres entiers qui ne contiennent pas de telles progressions, ce qui nous donne une borne inférieure sur v(N). Nous allons d'abord étudier les preuves de toutes les bornes inférieures obtenues jusqu'à présent, pour ensuite donner une autre preuve de la meilleure borne. Nous allons considérer les points à coordonnés entières dans un anneau à d dimensions, et compter le nombre de progressions arithmétiques qu'il contient. Pour obtenir des bornes sur ces quantités, nous allons étudier les méthodes pour compter le nombre de points de réseau dans des sphères à plusieurs dimensions, ce qui est le sujet de la dernière section.
 
The subject of this thesis is the study of arithmetic progressions in the integers. Precisely, we are interested in the size v(N) of the largest subset of the integers from 1 to N that contains no 3 term arithmetic progressions. Therefore, we will construct a large subset of integers with no such progressions, thus giving us a lower bound on v(N). We will begin by looking at the proofs of all the significant lower bounds obtained on v(N), then we will show another proof of the best lower bound known today. For the proof, we will consider points on a large d-dimensional annulus, and count the number of integer points inside that annulus and the number of arithmetic progressions it contains. To obtain bounds on those quantities, it will be interesting to look at the theory behind counting lattice points in high dimensional spheres, which is the subject of the last section.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [16669]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [364]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS