Show item record

dc.contributor.advisorLalin, Matilde
dc.contributor.authorGénéreux, Xavier
dc.date.accessioned2023-12-13T19:50:20Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2023-12-13T19:50:20Z
dc.date.issued2023-11-01
dc.date.submitted2023-08
dc.identifier.urihttp://hdl.handle.net/1866/32243
dc.subjectThéorie des nombresfr
dc.subjectPropriété de Northcottfr
dc.subjectFonctions zêtafr
dc.subjectCorps de nombresfr
dc.subjectCorps de fonctionsfr
dc.subjectNumber Theoryfr
dc.subjectNorthcott propertyfr
dc.subjectZeta functionsfr
dc.subjectNumber fieldsfr
dc.subjectFunction fieldsfr
dc.subject.otherTheoretical mathematics / Mathématiques théoriques (UMI : 0642)fr
dc.titleLa propriété de Northcott de fonctions zêta sur des familles d'extensionsfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractEn mathématiques, une hauteur est une fonction utilisée pour mesurer la complexité d’un objet. Lorsqu’uniquement un nombre fini d’éléments possèdent une hauteur bornée, on dit alors que cette hauteur possède la propriété de Northcott. Un des intérêts de cette propriété est que les hauteurs la possédant peuvent être utilisées pour distinguer des sous-ensembles finis d’une famille infinie d’objets. Récemment, Pazuki et Pengo [47] ont étudié la propriété de Northcott où la hauteur considérée était l’évaluation de fonctions zêta de Dedekind en un entier n. Ce mémoire contient, en premier lieu, une étude similaire sur l’évaluation de fonctions zêta de corps de fonctions. Ce premier article pousse cette réflexion sur un plus grand domaine en considérant l’évaluation sur n’importe quel point s du plan complexe au lieu de valeurs entières n. On y montre que pour les points appartenant à une certaine région {s ∈ C ∶ Re(s) < σ0} où 0 < σ0 < 1/2, la hauteur considérée possède la propritété de Northcott et que ceux qui appartiennent à la région {s ∈ C ∶ Re(s) > 1/2} ne la possèdent pas. En prenant comme contexte les résultats du premier article, nous retournerons ensuite, dans un deuxième article, à la première situation des fonctions zêta de Dedekind pour étudier la question sur ce domaine étendu. Les résultats sur la propriété de Northcott sont différents et on trouve que le scénario sur les corps de fonctions est taché de disques non Northcott autour des entiers négatifs. Ces deux articles seront précédés d’une introduction à la théorie des corps de nombres et des corps de fonctions jusqu’à la définition de leur fonction zêta respective. Enfin, nous incluerons également une discussion des différences entre ces deux théories qui culminera à des définitions alternatives de leur fonction zêta. Ultimement, cette introduction pourvoira tous les outils nécessaires pour attaquer la question de la propriété de Northcott abordée dans les articles.fr
dcterms.abstractIn mathematics, heights are functions used to measure the complexity of an object. When only a finite number of elements have a bounded height, we say that this height has the Northcott property. One of the advantages of this property is that the heights possessing it can be used to distinguish finite subsets of an infinite family of objects. Recently, Pazuki and Pengo [47] studied the Northcott property where the height considered was the evaluation of Dedekind zeta functions at an integer n. This thesis contains, first of all, an article describing a similar study on the evaluation of zeta functions of function fields. This first article pushes this reflection on a larger domain by considering the evaluation on any point s of the complex plane instead of integer values n. We show that for points belonging to a certain region {s ∈ C ∶ Re(s) < σ0} where 0 < σ0 < 1/2, the considered height has the Northcott property, while for those belonging to the region {s ∈ C ∶ Re(s) > 1/2}, the height does not have the Northcott property. Taking as context the results of the first article, we will then return, in a second article, to the initial situation of Dedekind zeta functions to study the question on this extended domain. The results on the Northcott property are different and the scenario on function fields is found to be stained with non-Northcott disks around the negative integers. These two articles will be preceded by an introduction to the theory of number fields and function fields up to the definition of their respective zeta functions. Finally, we will also include a discussion of the differences between these two theories culminating in alternative definitions of their zeta function. Ultimately, this introduction will provide all the tools necessary to attack the questions on the Northcott property discussed in the articles.fr
dcterms.languagefrafr
UdeM.ORCIDAuteurThese0000-0003-4952-9557fr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.