Search
Now showing items 1-9 of 9
Generative models : a critical review
(2018-10-18)
Dans cette thèse, nous introduisons et motivons la modélisation générative comme une tâche centrale pour l’apprentissage automatique et fournissons une vue critique des algorithmes qui ont été proposés pour résoudre cette ...
Difference target propagation
(2018-10-18)
Backpropagation has been the workhorse of recent successes of deep learning but it relies on infinitesimal effects (partial derivatives) in order to perform credit assignment. This could become a serious issue as one ...
Factorized second order methods in neural networks
(2018-03-21)
Les méthodes d'optimisation de premier ordre (descente de gradient) ont permis d'obtenir des succès impressionnants pour entrainer des réseaux de neurones artificiels. Les méthodes de second ordre permettent en théorie ...
Learning to sample from noise with deep generative models
(2017-09-27)
L’apprentissage automatique et spécialement l’apprentissage profond se sont imposés ces
dernières années pour résoudre une large variété de tâches. Une des applications les plus
remarquables concerne la vision par ...
Generative models for natural images
(2018-03-21)
Nous traitons de modèles génératifs construits avec des réseaux de neurones dans le contexte de la modélisation d’images. De nos jours, trois types de modèles sont particulièrement prédominants: les modèles à ...
Deep Learning for Video Modelling
(2018-03-21)
Ce mémoire de maı̂trise présente une exploration des modèles génératifs dans le contexte de la vidéo. Ceci a demandé une étude approfondie des problèmes encourus par les chercheurs dans cette branche de la vision par ...
Algorithmes d'apprentissage pour la recommandation
(2013-02-01)
L'ère numérique dans laquelle nous sommes entrés apporte une quantité importante de nouveaux défis à relever dans une multitude de domaines. Le traitement automatique de l'abondante information à notre disposition est l'un ...
Prédiction et génération de données structurées à l'aide de réseaux de neurones et de décisions discrètes
(2019-03-13)
L’apprentissage profond, une sous-discipline de l’apprentissage automatique, est de plus en
plus utilisé dans une multitude de domaines, dont le traitement du langage naturel. Toutefois,
plusieurs problèmes restent ...
Applications of complex numbers to deep neural networks
(2019-06-19)
Dans la dernière décennie, une heureuse confluence de matériel, de logiciels et de théorie ont permis à l'intelligence artificielle de connaître un renouveau: un "printemps" et qui, contrairement au passé, semblent avoir ...