Show item record

dc.contributor.advisorPaull, Liam
dc.contributor.authorGauthier, Charlie
dc.date.accessioned2023-06-15T19:09:51Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2023-06-15T19:09:51Z
dc.date.issued2023-05-03
dc.date.submitted2023-03
dc.identifier.urihttp://hdl.handle.net/1866/28235
dc.subjectapprentissage par renforcementfr
dc.subjectrobotiquefr
dc.subjectapprentissage adversarielfr
dc.subjectreinforcement learningfr
dc.subjectroboticsfr
dc.subjectadversarial trainingfr
dc.subjectmachine learningfr
dc.subjectapprentissage machinefr
dc.subjectartificial intelligencefr
dc.subjectintelligence artificiellefr
dc.subject.otherArtificial intelligence / Intelligence artificielle (UMI : 0800)fr
dc.titleFear prediction for training robust RL agentsfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractLes algorithmes d’apprentissage par renforcement conditionné par les buts apprennent à accomplir des tâches en interagissant avec leur environnement. Ce faisant, ils apprennent à propos du monde qui les entourent de façon graduelle et adaptive. Parmi d’autres raisons, c’est pourquoi cette branche de l’intelligence artificielle est une des avenues les plus promet- teuses pour le contrôle des robots généralistes de demain. Cependant, la sûreté de ces algo- rithmes de contrôle restent un champ de recherche actif. La majorité des algorithmes “d’ap- prentissage par renforcement sûr” tâchent d’assurer la sécurité de la politique de contrôle tant durant l’apprentissage que pendant le déploiement ou l’évaluation. Dans ce travail, nous proposons une stratégie complémentaire. Puisque la majorité des algorithmes de contrôle pour la robotique sont développés, entraî- nés, et testés en simulation pour éviter d’endommager les vrais robots, nous pouvons nous permettre d’agir de façon dangereuse dans l’environnement simulé. Nous démontrons qu’en donnant des buts dangereux à effectuer à l’algorithme d’apprentissage durant l’apprentissage, nous pouvons produire des populations de politiques de contrôle plus sûres au déploiement ou à l’évaluation qu’en sélectionnant les buts avec des techniques de l’état de l’art. Pour ce faire, nous introduisons un nouvel agent à l’entraînement de la politique de contrôle, le “Directeur”. Le rôle du Directeur est de sélectionner des buts qui sont assez difficiles pour aider la politique à apprendre à les résoudre sans être trop difficiles ou trop faciles. Pour aider le Directeur dans sa tâche, nous entraînons un réseau de neurones en ligne pour prédire sur quels buts la politique de contrôle échouera. Armé de ce “réseau de la peur” (nommé d’après la peur de la politique de contrôle), le Directeur parviens à sélectionner les buts de façon à ce que les politiques de contrôles finales sont plus sûres et plus performantes que les politiques entraînées à l’aide de méthodes de l’état de l’art, ou obtiennent des métriques semblables. De plus, les populations de politiques entraînées par le Directeur ont moins de variance dans leur comportement, et sont plus résistantes contre des attaques d’adversaires sur les buts qui leur sont issus.fr
dcterms.abstractBy learning from experience, goal-conditioned reinforcement learning methods learn from their environments gradually and adaptively. Among other reasons, this makes them a promising direction for the generalist robots of the future. However, the safety of these goal- conditioned RL policies is still an active area of research. The majority of “Safe Reinforce- ment Learning” methods seek to enforce safety both during training and during deployment and/or evaluation. In this work, we propose a complementary strategy. Because the majority of control algorithms for robots are developed, trained, and tested in simulation to avoid damaging the real hardware, we can afford to let the policy act in unsafe ways in the simulated environment. We show that by tasking the learning algorithm with unsafe goals during its training, we can produce populations of final policies that are safer at evaluation or deployment than when trained with state-of-the-art goal-selection methods. To do so, we introduce a new agent to the training of the policy that we call the “Director”. The Director’s role is to select goals that are hard enough to aid the policy’s training, without being too hard or too easy. To help the Director in its task, we train a neural network online to predict which goals are unsafe for the current policy. Armed with this “fear network” (named after the policy’s own fear of violating its safety conditions), the Director is able to select training goals such that the final trained policies are safer and more performant than policies trained on state-of-the-art goal-selection methods (or just as safe/performant). Additionally, the populations of policies trained by the Director show decreased variance in their behaviour, along with increased resistance to adversarial attacks on the goals issued to them.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.