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Résumé

Les algorithmes d’apprentissage par renforcement conditionné par les buts apprennent à

accomplir des tâches en interagissant avec leur environnement. Ce faisant, ils apprennent à

propos du monde qui les entourent de façon graduelle et adaptive. Parmi d’autres raisons,

c’est pourquoi cette branche de l’intelligence artificielle est une des avenues les plus promet-

teuses pour le contrôle des robots généralistes de demain. Cependant, la sûreté de ces algo-

rithmes de contrôle restent un champ de recherche actif. La majorité des algorithmes “d’ap-

prentissage par renforcement sûr” tâchent d’assurer la sécurité de la politique de contrôle

tant durant l’apprentissage que pendant le déploiement ou l’évaluation. Dans ce travail, nous

proposons une stratégie complémentaire.

Puisque la majorité des algorithmes de contrôle pour la robotique sont développés, entraî-

nés, et testés en simulation pour éviter d’endommager les vrais robots, nous pouvons nous

permettre d’agir de façon dangereuse dans l’environnement simulé. Nous démontrons qu’en

donnant des buts dangereux à effectuer à l’algorithme d’apprentissage durant l’apprentissage,

nous pouvons produire des populations de politiques de contrôle plus sûres au déploiement

ou à l’évaluation qu’en sélectionnant les buts avec des techniques de l’état de l’art. Pour

ce faire, nous introduisons un nouvel agent à l’entraînement de la politique de contrôle, le

“Directeur”. Le rôle du Directeur est de sélectionner des buts qui sont assez difficiles pour

aider la politique à apprendre à les résoudre sans être trop difficiles ou trop faciles. Pour

aider le Directeur dans sa tâche, nous entraînons un réseau de neurones en ligne pour prédire

sur quels buts la politique de contrôle échouera. Armé de ce “réseau de la peur” (nommé

d’après la peur de la politique de contrôle), le Directeur parviens à sélectionner les buts de

façon à ce que les politiques de contrôles finales sont plus sûres et plus performantes que

les politiques entraînées à l’aide de méthodes de l’état de l’art, ou obtiennent des métriques

semblables. De plus, les populations de politiques entraînées par le Directeur ont moins de

variance dans leur comportement, et sont plus résistantes contre des attaques d’adversaires

sur les buts qui leur sont issus.

Mots-clés : apprentissage par renforcement, robotique, apprentissage adversariel
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Abstract

By learning from experience, goal-conditioned reinforcement learning methods learn from

their environments gradually and adaptively. Among other reasons, this makes them a

promising direction for the generalist robots of the future. However, the safety of these goal-

conditioned RL policies is still an active area of research. The majority of “Safe Reinforce-

ment Learning” methods seek to enforce safety both during training and during deployment

and/or evaluation. In this work, we propose a complementary strategy.

Because the majority of control algorithms for robots are developed, trained, and tested in

simulation to avoid damaging the real hardware, we can afford to let the policy act in unsafe

ways in the simulated environment. We show that by tasking the learning algorithm with

unsafe goals during its training, we can produce populations of final policies that are safer at

evaluation or deployment than when trained with state-of-the-art goal-selection methods. To

do so, we introduce a new agent to the training of the policy that we call the “Director”. The

Director’s role is to select goals that are hard enough to aid the policy’s training, without

being too hard or too easy. To help the Director in its task, we train a neural network online

to predict which goals are unsafe for the current policy. Armed with this “fear network”

(named after the policy’s own fear of violating its safety conditions), the Director is able

to select training goals such that the final trained policies are safer and more performant

than policies trained on state-of-the-art goal-selection methods (or just as safe/performant).

Additionally, the populations of policies trained by the Director show decreased variance in

their behaviour, along with increased resistance to adversarial attacks on the goals issued to

them.

Keywords: reinforcement learning, robotics, adversarial training
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Chapter 1

Introduction

In deep reinforcement learning (DRL), policies iteratively adapt as they explore their

environments, making them one of the most promising areas of research for control policies

for generalizable robots. Of particular interest are goal-conditioned DRL policies. These

policies have the ability to change their behaviour based on a goal. For example, one might

send the robot’s control policy a string of text such as “fetch the ball” or “open the door”,

or a vector of numbers describing desired velocities, etc. Because any task can be specified

using the goal-condition, such policies are a type of universal policy. These policies are

especially desirable for robotic control because their goal-conditioning offers some modicum

of interpretability to the agent’s behaviour, and because human operators (or other DRL

policies) can set the goal dynamically to change the robot’s behaviour without changing the

policy in control of the robot.

While DRL is promising, it is often prohibitively costly to train in the real world. For ex-

ample, one of the state-of-the-art DRL techniques requires [≈ 3Mtimesteps] to train a single

policy on a simple idealized legged robotic locomotion task [22]. Using generous estimates

(a control frequency of 60Hz), this corresponds to
[

≈ 3Mtimesteps ∗ 1
60

seconds ≈ 139hours
]

,

without taking into account the large amount of time required to iteratively update the three

neural networks involved, to reset the robot’s environment (and the robot itself), or even to

search for adequate hyperparameters for the policy’s training. In fact, optimizing DRL on

real robots is often deemed intractable unless given access to vast monetary support and a

large amount of space and person-hours.

A common solution is training DRL in simulation, allowing for vast parallelization and

to run things faster than in the real world. But this often requires fine-tuning a sub-optimal

final policy on the final hardware, which can then result in damaging the robot. To take full

advantage of the generality of learning from experience, we require methods that allow us to

be confident that the learned policy will perform well and act safely.



Safety for deep reinforcement learning is not a novel concern. Many methods already exist

to guide the policy’s training towards safer behaviour. Most works that focus on this prob-

lem seek safety guarantees through convergence proofs. In particular, “Safe Reinforcement

Learning” methods focus on safety both during training and deployment and/or evaluation.

Such methods are particularly desirable when training DRL on the real hardware, precisely

because the policy is incentivized to act safely at all times.

In this work, we consider a complementary approach to safety. For the same reason

practitioners train in simulation before deploying on the real hardware, we can afford to

act in unsafe ways in simulation. For our problem setting, the only safety consideration

is to avoid undesirable terminal states called crash states. It is known DRL can act in

overly conservative ways during training because of early termination problems, leading to

sub-optimal exploration behaviour [29]. In this work, we show that by incentivizing unsafe

behaviour during training, we can improve the optimization process of the policy and obtain

increased safety after training.

As part of this work, solely through goal selection during training, we seek to

produce goal-conditioned policies that are safer at evaluation time while still accomplishing

their goals to the best of their ability. We do so by using an adversarial training goal

distribution. This is motivated by the intuition that by giving the policy more experiences

of unsafe states, given an adequate reward function (as defined in Chapter 3.1), the policy

will implicitly learn to avoid such states.

We propose a novel automatic goal selection method that is simple and easy to implement.

We introduce an adversarial goal selector to the policy’s training, the “Director”. In parallel

to the policy’s training, we train online a failure predictor that learns to predict if the policy

will visit a crash state on a given goal. This failure predictor parameterizes the Director.

By querying the failure predictor, the Director can retrieve goals that are adequately hard

and better shape the policy’s training. This strategy requires no explicit constraints, input

space augmentation, computing auxiliary safety violation optimization terms, or additional

policy neural parameters (all common requirements for “Safe DRL” methods), all of which

can make training more brittle [56][34]. This makes our method ideal for robotic learning.

The main contributions of our work are as follows:

(1) We propose a novel training-goal selector that we consider to be simpler to implement

and to understand than comparable state-of-the-art methods. To our knowledge, our

method is the first training-goal-selection method that optimizes for and is shown to

improve the agent’s safety.

(2) Adversarial training for DRL agents is still not well understood. Overly adversarial

adversaries often lead to sub-optimal final policies [14]. Overly cooperative adver-

saries lead to coddled policies that are ill-adapted to the rigors of their evaluation
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or deployment environments. We offer an ablation study over the “cruelty” of our

method’s adversarial agent. We identify a desirable balance between cooperative and

adversarial behaviours.

(3) We evaluate our strategy on a series of tasks, including a series of toy (generalist)

problems, and two very challenging quadruped locomotion and manipulation tasks.

Empirically, our strategy reduces trained policy population variance and median for

total evaluation crashes (or produces agents that are just as good as the best baselines

in study). It similarly improves or maintains the final agent’s ability to perform the

task (quantified through evaluation reward).

(4) During evaluation, we train a fully adversarial goal-selector agent. We then pit the

control policy against these adversarial goals. We show that our strategy greatly

improves the policy’s resistance to these goals. Against them, compared to baseline

methods, the policies trained using our method show increased reward performance

and decreased number of crashes, along with marked variance reduction for these

metrics for populations of trained policies.
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Chapter 2

Background

In this section, we discuss the necessary background aspects of the problem of sub-goal

generation for safer trained final policies that we tackle. We discuss in Chapter 2.1 the

preliminary knowledge necessary to understand the problem setting. We outline related

work in Chapter 2.2.

2.1. Preliminaries

First, we define what a control problem is and we summarily discuss various classical

control methods in Chapter 2.1.1. In Chapter 2.1.2, we discuss Markov Decision Processes,

an overwhelmingly common model used to represent control tasks. We then detail Bandit

problems in Chapter 2.1.3. In Chapter 2.1.4, we summarize a category of control methods

called “reinforcement learning”. In Chapter 2.1.5, we summarize “deep reinforcement learn-

ing”. In Chapter 2.1.6, we offer a brief overview of curriculum learning, or the idea that

some meaningful order of tasks is more conducive than some other for learning a target task.

Finally, we briefly summarize adversarial training in Chapter 2.1.7.

2.1.1. Control

Control is the task of selecting actions to issue to an agent in such a way that it solves

a problem statement while minimizing some notion of cost over the problem’s states and

actions.

A controller acts upon control variables. For example, for a self-driving car, the control

variables could be the steering angle and the pressure put upon the gas and brake pedals.

For a robotic arm, some control variables could be the joint angles and end-effector positions.

One of the earliest examples of a control problem is Johann Bernoulli’s 1696 Brachis-

tochrone problem [27], wherein one must find the optimal curve for a marble to go from

point A to point B in the least amount of time. Here, the control variable is simple: one can



only influence the shape of the curve, and one can only change the curve once, before the

marble even starts rolling. See Figure 2.1 for a visual explanation of the problem.

Figure 2.1 – Visual explanation of an instance of the Brachistochrone problem. There
exists an infinity of possible curves that would lead a marble from point A to point B (three
possible curves are represented in blue, red, and green). Before letting the ball fall and
roll down the curve according to gravity, the agent tasked with solving the problem sets
the shape of the curve. Which curve enables the marble to reach point B the fastest? The
optimal curve (in red) can be derived analytically using calculus, or namely through methods
derived from the control field. Image obtained and modified from the Brachistochrone Wiki

entry [63].

Another early example of a control problem comes from the famous On Governors by

Mr. J. C. Maxwel [38], where the basis of a unifying theory for the analog ship-governing

and windmill-regulating devices of the time is put forth. The main problem in study is

the task of issuing commands for a ship’s governor such that the ship stays on course and

maintains a requested speed. Contrarily to the Brachistochrone problem, in this case, the

control variables (steering, engine speed or sail angles, etc.) can be influenced at any instant.

On Governors subsequently led to the discovery in the 1920’s of what is possibly the most

famous general-purpose controller, the Proportional-integral-derivative (PID) controller [39].

A PID controller is defined using three different terms. The proportional term (P) pro-

duces an action for the control variables based on the “error” term (e), the difference between

the current state of the system and the desired state. The integral term (I) seeks to eliminate

historical error terms. The derivative term (D) evaluates the rate of change of the error and

produces actions that try to eliminate the anticipated error.

u(t) = Pe(t) + I

∫ t

0
e(τ)dτ + D

de(t)

dt
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Notice that the PID controller aims to minimize the cost function e(t). The modern

optimal control field poses control as a decision policy for the control variables and uses

the cost function to tune this policy. Finding the optimal control law amounts to solving

the optimization problem defined by the relationship between the control equations and the

cost function. A few different methods can be used to solve the optimization problem, from

simple heuristics to classical dynamic programming to more recent methods. State-of-the-

art model predictive control (MPC) essentially involves solving a simpler control problem

at every single timestep to find the best current action while still accounting for the future

[18].

In all of the above cases, the system can be described by a state st which is given to the

controller, which then produces action at in response. The system then transitions to state

st+1, and, if it is allowed to, the controller again takes some action in response. There exist

many ways to model this feedback loop. One of the most common, and the most relevant

for this work, are Markov decision processes.

2.1.2. Markov Decision Process

A Markov decision process (MDP) is defined by a tuple (S, A, P , R, ρ0), where S is the set

of possible system states, A is the set of possible actions one can apply to the system’s control

variables, P : S × A → S describes the state-action transition dynamics, R : S × A → ❘

describes the possibly-stochastic state-action reward function (cost function in traditional

optimal control settings), and ρ0 describes the initial state distribution. As their name

implies, MDPs have the Markov property: one only needs the current state and action to

describe the future state (conditioned on some transition stochasticity encapsulated in P).

Here is a list of terms that we utilize in this work to refer to different concepts related to

MDPs:

— A “timestep” t is the current step count of the problem.

— A “transition” is a tuple describing the change in the MDP’s state and the reward

issued in reaction to the policy’s action, i.e. (st, at, rt, st+1).

— An “episode” refers to a single “rollout” of the policy in the MDP, i.e. every

(st, at, rt, st+1) tuple from a given initial state s0 ∼ ρ0 until the final state of the

episode. The final state either belongs to some subset ST ⊂ S of terminal states, or

is simply the result of an upper bound on the number of possible timesteps.

— An “infinite-horizon” problem is an MDP where no timestep limit exists, i.e. t is

unbounded.

— The entity taking actions in the MDP can be referred to as the “decision policy” π

(“policy”, for short). The task of π : S → A is to take actions such that it maximizes

(minimizes) a function of some kind over the reward (cost) terms encountered during
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an episode. This function is usually the expected cumulative sum of the reward signals

rt encountered during the episode, discounted by the “discount fator” γ ∈ [0,1].

— A “rollout” refers to any data collected from policy-MDP interactions. In practice, it

mostly refers to the latest few generated transitions or episodes.

In MDPs, the reward function R habitually describes a task that must be accomplished.

A simple example of a commonly-used MDP research environment with a single task is

Minigrid [11], in which π must issue movement commands such that the agent reaches a

goal in a maze. This might include more complex navigation sub-tasks such as grabbing keys

to unlock doors. A more complex example of a task would be asking a robot arm “make me

a cup of tea”, which would also include many sub-tasks (“boil water”, “grab a cup”, “grab

a tea bag”, etc.), all described in the singular reward function.

Figure 2.2 – Minigrid is a very popular environment for benchmarking control policies
[11]. The agent must reach the goal represented by a green cell. In some variants, there are
coloured keys that must be used to unlock corresponding doors.

2.1.2.1. Goal-conditioned Markov Decision Process.

In a goal-conditioned Markov decision process (GMDP), a goal condition is added to the

system description.

Generally, GMDPs are defined by a tuple (S, G, A, P , R, ρ0, ρg), with G the set of possible

goals and ρg the distribution from which goals are sampled (which can be a simple probability

distribution, or be controlled by some higher level decision process of some kind). Because

of the addition of the goals, the reward structure changes to R : S × A × G → ❘.
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Going back to the examples given above for MDPs, a simple example of goal-conditions

in Minigrid [11] would be text prompts that ask the agent to accomplish some sub-tasks

necessary to solve the maze (“grab yellow key”, “unlock yellow door”, “reach goal”). A more

complex example of a series of goals would be sequentially asking a robot arm “boil water”,

“grab a cup”, “grab a tea bag”, etc., with possibly a different reward function for each. In

practice, the addition of the goal-condition as input to the reward function can allow us to

more precisely describe the task at hand to the policy.

Some care must be given to tie the GMDP formulation to robotic control. In the field

of robotics, specific terms are used to describe different control problems. For example, a

command normally describes a velocity target or a requested trajectory or a set of target

joint angles. A goal habitually presupposes a navigation task of some sort, where the agent

must reach some particular location in the environment. A task is normally some more

complex set of motions, often requiring complex maneuvers that could be described as a

combination of commands and goals. From the point of view of GMDPs, all of the above

are simply goals. In this work, for the sake of simplifying our notation, we follow the GMDP

formulation.

One popular generalization of MDPs and GMDPs is the Partially observable Markov

decision process (POMDP) formulation, where the observations given to π are not sufficient

to describe the full state of the system. In other words, there exists some observation function

that alters the state st to create observation ot. This observation is what is then given to π.

It is obviously impossible to fully describe the real world’s state with our current technol-

ogy. For this reason, defining or simulating robotic control problems often requires POMDPs.

In this work, we only consider goal-conditioned POMDPs, but to ease our notation, we still

denote them as standard GMDPs without affecting the validity of our results.

2.1.3. Bandits

Going back to the historical examples of control problems described in Chapter 2.1.1,

whereas one might use an MDP with very small timestep increments between state transitions

to model the task of controlling a ship’s governor (because actions can be issued at any given

instant), modelling the Brachistochrone control problem using an MDP seems impractical.

After all, the only instant in which the controller can issue an action is before the marble even

begins its descent down the curve. Why go through all of the state transitions required to

fully model the marble’s trajectory when all of this could be described as a singular reaction

to the shape of the curve issued by the controller? Instead, one might want to use a Bandit

to represent the problem.

For the purposes of this work, Bandits can simply be interpreted as single-step MDPs,

i.e. MDPs in which the policy in play can only issue a singular action before the control
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episode ends. As such, the tuple defining a bandit is much simpler than the one used to

define an MDP: (C, A, R), where C is the context given to the decision policy (some bandit

problems provide no context, i.e. C = ∅), A is the set of actions available to the policy, and

R : S × A → R is the reward function.

A subclass of bandits of particular interest are Bernoulli bandits, with binary reward

functions R : C × A → ✶ ¶success♢, where ✶ is the indicator function. While seemingly

restrictive, Bernoulli bandits are actually very common and hold important relevance for

this work.

2.1.3.1. Thompson Sampling.

A common heuristic for finding decision policies for Bernoulli bandits with discrete action

spaces was formulated in 1933 by Canadian entomologist William R. Thompson [60]. In

Thompson sampling, a state-action function predicting success probability is represented

by a Beta distribution parameterized by the historical success/failure of each action [53].

During the initial decision episode, this corresponds to a uniform policy over the actions.

Every episode thereafter, the agent samples an arbitrary number of possible actions, rates

them by the success prediction function, and selects the highest-valued. This offers a good

exploration-exploitation trade-off. With adequate tuning, such a strategy is close to being

optimal [10]. See Figure 2.3 for a visual intuition into Thompson sampling.

2.1.4. Reinforcement Learning

Reinforcement learning (RL) is perhaps the most famous area of research when it comes

to defining control policies for both MDPs and Bandits. In reinforcement learning, a search

in policy space is performed to find the best policy to operate in the MDP, i.e. the π that

maximizes the expected γ-discounted sum of rewards. The value function vπ(s) describes

the value of being in a state s for policy π.

vπ(s) = E



∞
∑

t=0

γtR(st, π(st))

∣

∣

∣

∣

∣

s0 = s

]

By finding the policy with the maximal vπ ∀s ∈ S, we find the optimal policy for the

MDP.

A great many number of methods exist to perform this search. One such method is the

eponymous REINFORCE [57], in which a policy π parameterized by weights θ collects data

from rollouts. Every episode, the gradient term ∇θ log πθ(st, at) is computed for all (st, at) in

the episode. The gradient terms are then multiplied by the discounted sum of future rewards

gathered from the transitions after their respective timestep t. The resulting summation

over the gradient-future-rewards terms results in a gradient that allows us to update the
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Figure 2.3 – Visual explanation of Thompson Sampling. Every possible action has a
corresponding true success probability: 0.3 for blue, 0.7 for orange, and 0.8 for green. At
first, each possible action has never been picked, and so the estimated success probability is
equal for each. The policy thus randomly picks an action. Every control episode thereafter,
the control policy picks actions randomly, weighted by their historical success rate (shown
in the legend of each plot: success/trials). By the end of the experimentation, the policy has
correctly converged to almost always selecting the green action. Plots obtained from a slight

modification of BabyRobot [49].

policy πθ’s weights θ towards a policy with a better value function. Iteratively, we find the

optimal policy.

For more complex problems, such as MDPs with large and/or continuous states and

action spaces, classical reinforcement learning is ill-fitted. For example, classical Q-learning

RL methods learn a S × A table where the cells describe the value of taking action at for a
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given state st [62]. The final policy selects the best action for its current state according to

the table. This simple approach works well for small discrete action and state spaces, but it

is an obviously intractable technique for continuous spaces, or even for large discrete spaces

(one of the pioneers of RL, R. Bellman, calls this the “curse of dimensionality” [3]). Other

classical RL techniques have similar issues. For example, training classical RL on visual

inputs or comparatively-simple games with large discrete spaces such as Go is considered

fairly intractable [41].

2.1.5. Deep Learning and Deep Reinforcement Learning

In deep learning [31], neural networks are used to tractably learn complex functions from

data. Put simply, using neural networks, we can learn a mapping from input to output from

demonstrations of (input, output) pairs.

To do so, we define a differentiable loss function that describes how far the network’s

current outputs are from the expected outputs for a given input. Because the loss function is

differentiable (and so is the neural network), we can compute the gradient of the loss function

for the network’s parameters with regards to a batch of (input, output) pairs. This very costly

computation is rendered tractable by using a now-standard technique called back-propagation

[52][19]. Armed with the gradients, we can then tune the network’s parameters to reduce the

loss for each batch of data. By applying this procedure multiple times for all data points,

we iteratively find the network parameters that minimize the loss [7]. Even though this

optimization process generally has no analytical solution, and the optimization landscape is

often non-convex, neural networks empirically converge to very reasonable functions, often

outperforming convex relaxations of the problem [26].

Deep neural networks have successfully been applied to the problem of reinforcement

learning. For example, for the case of intractable Q-learning described in Chapter 2.1.4, a

deep neural network-enabled equivalent called Deep Q-Network (DQN) was shown to suitably

handle continuous spaces and large discrete spaces [42]. Deep reinforcement learning was

shown to beat Atari games [41], offer superhuman performance in games such as Go or chess

[54], and even beat human champions at challenging multiplayer real-time video games such

as Dota 2 [5].

DRL has also successfully been applied to very challenging robotic control tasks. In one

of the most famous examples, a control policy for a Shadow Dextrous Hand, a particularly

lifelike robotic reproduction of a human hand, was learned in simulation and successfully

deployed in the real world [43]. Some examples among many others include learning control

policies for quadrupedal robots from scratch [51], or learning how to control robot arms [21].
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2.1.5.1. Proximal Policy Optimization.

Of particular interest to this work is a method called proximal policy optimization (PPO)

[55]. In this method, the policy learns from data that incorporates transitions that were

recently collected from policy rollouts (PPO is an on-policy algorithm). The details and

tricks required to make PPO work are both numerous and out of scope for this work (a

subset of such tricks are outlined in the aptly-named The 37 Implementation Details of

Proximal Policy Optimization [24]). In general, the main contribution of PPO is the idea of

moving the policy’s weights only slightly after each update. This is done using a measure

of the difference between the action distribution of the current policy, and what the new

policy’s distribution would be after the update to its parameters. Given this difference, one

can then alter the gradient update step of the policy in order not to change the policy too

much on a single update. As such, the policy’s behaviour before and after an update step

are remarkably similar.

PPO enables the use of massive parallelization during policy rollouts, something that

very few other methods support. As outlined in Chapter 1, the use of simulation to learn

robotic control policies is widespread in order not to damage the real hardware with sub-

optimal policies, so this potential for paralelization is greatly desirable. PPO and learning

for robotic control go hand-in-hand [43][51][35].

2.1.6. Curriculum Learning

To humans, teaching complex tasks is instinctively a sequential process of some kind. All

of our (functional) schooling systems follow a pattern, no matter the country or historical

period. Inevitably, the schooling system starts with very small and simple tasks that build up

to some larger task. As the students get better, the tasks get harder and harder. The specific

optimal sequence of tasks is not known; every schooling system uses a different curriculum

of tasks. But one constant is present in every (functional) human schooling system: some

meaningful possibly-stochastic order of tasks exists that is touted to be more conducive to

learning.

For the machine learning community, the act of ordering tasks in some meaningful way in

order to guide training is called curriculum learning (CL). The earliest (and eponymous) work

on this subject showed that CL can enable more rapid convergence and better generalization

[4]. Traditionally, such curricula were hand-made by the human practitioner. We compare

against one such hand-made curriculum as a baseline method, detailed in Section 4.3.

Since, many different automated CL methods were developed. Most common examples

consider CL for supervised learning, where some better order of classification or regression

35



tasks are shown to the network during training to improve its convergence and/or perfor-

mance.

Other methods seek to generate or tune environments for reinforcement learning prob-

lems. One of the more famous and recent methods in this area is Protagonist-Antagonist

Induced Regret Environment Design (PAIRED) [14], where two agents are introduced to

the policy’s training. The “antagonist” and the “adversary” form a team against the policy

(the “protagonist”). The three agents in play are all DRL policies. The adversary’s task

is to generate environments. Both the protagonist and the antagonist seek to solve these

environments. The adversary’s reward signal comes from the regret of the protagonist, i.e.

how much better the antagonist does compared to the protagonist. This leads to a natural

progression in the complexity of environments generated by the adversary, and helps shape

the training of both the protagonist and antagonist.

Of particular interest to us are curriculum learning methods that seek to generate cur-

ricula on the space of goals for a GMDP. Since such methods are the most similar to our

own, we detail them separately in Section 2.2.3.

2.1.7. Adversarial Training

Common methods to automatically generate curricula for machine learning utilize adver-

sarial training. By pitting two agents against each another, they bootstrap their strategies,

forcing each other to get better and better as training goes on. Most commonly, in these

methods a zero-sum game is formulated. In such games, one agent’s gain is the other’s loss.

Think of playing rock-paper-scissors: when you win, the other loses.

A more complex example of a zero-sum game is the training setup of a basic Generative

Adversarial Network (GAN)[20]. In this setup, a generator learns to generate synthetic data

that resembles data from a ground truth distribution and a discriminator learns to tell the

synthetic data from the ground truth data. When the generator fools the discriminator,

it wins and the discriminator loses, and vice-versa. This corresponds to two opposed opti-

mization objectives. A common formulation for such training is a minimax game, where one

agent maximizes the objective that the other agent minimizes. Here is the minimax game

used to train GANs [20]:

min
G

max
D

V (D, G) = E
x∼pdata(x)[log D(x)] + E

z∼pz(z)[log(1 − D(G(z)))] (2.1.1)

In Eq 2.1.1, D is the discriminator, G is the generator, ρdata is the target data, and pz is

the noise used to condition the generator to generate an image. As mentioned above, when

the discriminator wins, the generator loses. This generates a learning signal that updates

the generator.
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Since the original formulation of the GAN method, many similar works were developed.

Some variants include conditioning the network to produce specific modes of data [40] or

transferring styles between images [64]. We detail adversarial training methods that are

adapted to the problem of training-goal generation that we tackle in Section 2.2.3.

2.2. Related Work

As discussed in Chapter 1, we are interested in the influence of the selection of training

goals on the deployment or evaluation safety of a DRL policy. In so doing, we propose a novel

and complementary approach to safety that has, to our knowledge, not been investigated

before. In Chapter 2.2.1, we detail methods that utilize data intrinsic to a problem to guide

a DRL agent’s training. In Chapter 2.2.2 we detail the established methods normally used

to attain DRL safety, and detail how such methods are still fully compatible with ours.

In Chapter 2.2.3, we discuss various methods related to the task of goal selection during

training.

2.2.1. Intrinsic Motivation

Intrinsic motivation methods seek to find some principled way to construct reward signals

for DRL agents. In this sub-field of DRL, the reward signal offered by the MDP is seen as

an extrinsic signal. One then seeks to learn or otherwise generate intrinsic reward signals

from the behaviour of the agent in the MDP. A high-level human-centric example would

be learning how to play the guitar using both extrinsic signals (a teacher that guides one’s

learning, and the fact that one’s music sounds “off” compared to the target song) and

intrinsic signals (learning the guitar to impress people, or spending long hours learning it

from a perfectionist mindset).

Many intrinsic motivation methods are named after emotions or concepts that echo hu-

man intrinsic motivations. In the “Intrinsic Curiosity Module”, a forward model learns

to predict the future state st+1 from the current state-action pair (st, at). Some notion of

difference between the predicted next state and the true next state is then used as a reward

signal for the agent [44]. In “Diversity is all you need”, a discriminator learns to identify

individual agents in a population by their behaviour. The error of the discriminator is used

a reward signal for the agents [16]. In “Surprise Minimizing RL”, a model is learned that

predicts the environment’s reaction to an action at in the presence of entropy extrinsic to the

agent. The intrinsic reward signal is based on the minimization of the surprise of the model.

By minimizing the surprise, the agent is incentivized to exert control upon its environment

in such a way that it seeks predictable transitions, avoiding the undesirable entropy of the

environment [6].
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Even in the absence of extrinsic signals, intricate behaviour emerges from the intrinsic

motivation. This leads some to believe that intrinsic motivation methods have the potential

to replace extrinsic signals in large parts, especially in sparse reward settings [2].

2.2.1.1. Random Network Distillation.

Again inspired by human emotions, random network distillation (RND) gives the agent

reward signals based on maximizing surprise (effectively targeting the inverse of “Surprise

Minimizing RL”) [8]. To do so, RND utilizes two networks with differently initialized weights.

One of these networks is frozen with the initial weights it is instantiated with (the network

receives no training whatsoever). Whenever the agent takes a step in the environment, the

two states st and st+1 are concatenated and passed through the frozen network, producing

output ofrozen. The inputs are then passed through the other network, producing output

otrained. The reward given to the agent is based on the difference between ofrozen and otrained.

The surprise terminology comes from the prediction failure of the trained network. When

it outputs values that are far from the frozen network’s outputs, the error term comparing

the two outputs is big, and so it is said that the trained network is surprised.

2.2.2. Reinforcement Learning Safety

“Safety” is a difficult thing to define in the scope of DRL. For example, one might define

a chess-playing robot arm’s task as some compound function composed of its ability to grasp

and move chess pieces and its ability to win chess games. This hypothetical reward function

would fully describe the robot’s task (win chess games). However, hidden within this task

are safety considerations. The arm shouldn’t grasp the pieces so hard that they break, it

shouldn’t throw the pieces off the board, and it should also never grasp things that are

not chess pieces. Unfortunately, such concerns are hard to account for ahead of time, and

accidents do happen [37] 1.

RL safety is the name given to the consideration of safety for RL agents. This includes

both safety considerations known ahead of time and safety considerations that emerge upon

deployment. “Safe RL” seeks to ensure the agents act safely at all times, both during training

and during deployment. This safety guarantee is normally achieved though convergence

proofs that show the agent’s training should converge to a policy that is both optimally

performant (achieves the optimal value function) and optimally safe. In practice, due to the

highly non-convex optimization problem that DRL training tries to solve, not all convergence-

proven “Safe RL” methods actually converge to an optimal policy on complex tasks [56]. In

1. While the robot involved in the cited accident was not necessarily controlled using reinforcement
learning, this event still exemplifies the difficulty of coupling task specification and safety considerations.
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contrast, while our method offers no safety guarantee, we empirically show that it improves

both safety and performance on a series of very complex legged robotic locomotion tasks.

We elect not to compare against “Safe RL” baselines in this work. Our method is ex-

plicitly not a “Safe RL” method. One might consider it to be an “Unsafe RL” method: to

achieve safety after training, we actually encourage unsafe behaviour during training. Com-

paring against methods that enforce safety at all times would be unfair both for us and for

them; we simply do not operate under the same assumptions. In the same vein, our method

is actually completely compatible with “Safe RL” methods. Since “Safe RL” methods offer

safety guarantees, they should gracefully handle the increased risk coming from environ-

ments that utilize our method, and the underlying RL agent should also benefit from the

goal distribution that our method offers.

Here, we present three large categories of “Safe RL” methods: methods utilizing “recovery

agents” in Section 2.2.2.1, methods utilizing reward shaping in Section 2.2.2.2, and methods

enforcing optimization bounds in Section 2.2.2.3.

2.2.2.1. Recovery.

There exists a category of “Safe RL” methods that is particularly well-adapted to robotic

problem settings. These methods utilize recovery agents. In such methods, the DRL agent

optimizes for performance. A second agent (the recovery agent), which is either learned or

hand-coded, is tasked with detecting and recovering from unsafe states. Some variations of

this idea include (1) Learning from data collected prior to training, and then optimizing a

mixture of two different policies (one targets performance, the other targets safety) [59], (2)

Learning a safe DRL policy that recovers from the unsafe states visited by a DRL policy

that guides a low-level MPC controller [65], or (3) Leveraging a library of recovery experts

to select from and learning a curriculum of recovery strategies for the DRL policy [61].

There is a related imitation learning technique (learning a policy from expert demonstra-

tions [25]) that also leverages the mixing of a learner agent and an expert policy. In Dataset

Aggregation (DAGGER) [50], a classical policy (the expert, controlled using MPC, PID, or

others) acts in an environment. Sometimes, the imitation learning policy acts in its stead

(or random noise is applied to the expert’s actions), forcing the expert away from the safe

behaviour it normally acts in. The expert then shows the policy how to recover to its normal

behaviour. This enables the imitation learning agent to learn how to act safely in states it

would normally have a difficult time navigating.
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2.2.2.2. Reward Shaping for Safety.

Some works seek to encode the safety considerations directly in the reward function. One

example of this category of works is “Saute RL” [56], where an encoding of the safety con-

straints are concatenated to the observations sent to the RL agent and the reward objective

is reshaped to reflect safety violations. This enables the policy to operate under different

“safety budgets”, a measure of how many safety violations it can make. The converged policy

acts safely with probability one.

Of particular interest to this work is “Intrinsic Fear” [32]. A fear network is learned

to predict if a given state st is within k transitions 2 from a catastrophe state, a state that

violates safety conditions. This intrinsically-motivated fear network is then used to shape

the reward signal given to the policy such that it is incentivized to avoid states within the

fear radius k of states around the catastrophe states.

However, in general, encoding the safety considerations directly in the reward function

is considered to be mostly intractable [45][1][12]. In fact, such reward shaping is often

detrimental to the policy’s optimization in non-trivial problems because of early termination

issues. Giving the policy negative rewards for acting unsafely during its initial exploration

steps can produce overly-cautious policies that fail to find good behaviours [51][29]. In

specific task settings however, it is possible to fully describe safety through rewards. Our

method requires this to be true, as explained in Chapter 3.1.

2.2.2.3. Encoding Safety in the Optimization Process.

This class of methods seeks to impose safety through constraints applied to the optimiza-

tion of the DRL agent. Perhaps the most famous are methods using the conditional value

at risk (CVaR) formulation. In this setting, satisfying the maximal CVaR is encoded in the

optimality criterion for RL [13]. By satisfying the criterion, the agent is able to maximize

performance conditioned on the risk of bad outcomes in mind. In other words, the agent

achieves the optimal value function while avoiding the worst-case outcomes.

2.2.3. Goal Selection

The task of selecting goals such that an agent learns with more efficacy, or such that an

agent reaches some ultimate goal through a series of sub-goals, is called “goal selection”. We

refer the reader to the excellent survey on RL in GMDPs by M. Liu et al. [33] for a more

in-depth investigation into such methods.

We present two important examples. In the first, a GAN [20] is learned to generate

goals of intermediate difficulty for a learning DRL agent [23]. This helps guide the agent’s

2. With k being a hyperparameter.
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training, improving convergence speed and policy generalization. In the second, a second

DRL agent called the “teacher” is introduced [9]. This agent generates goals for the student,

and is trained using a reward signal based on how long the learner agent (the “student”)

takes to reach the goal. This again helps improve convergence speed, and also enables the

policy to solve harder tasks than when trained using baseline methods.

We compare against a state-of-the-art method of this category as a baseline. We present

this method in Section 2.2.3.1.

We note that many works of this category are tuned for task settings with sparse goals

(achieving goals requires visiting rare states), with sparse reward functions (the reward signal

is zero for most transitions). Some strategies that deal with this issue include incentivizing

visitation of past achieved goals [47] or learning an intrinsically-motivated uniform distribu-

tion for image-based goals [48]. In our case however, we experience the opposite problem:

we assume a dense reward reward function where the (continuous) goals are easily achiev-

able. Instead, the safety violation cases are sparse and must be made even sparser by

improving the policy.

2.2.3.1. Value Disagreement Sampling.

In this training-goal selection method, an ensemble of DRL critics are trained in place of

the single critic traditionally used by DRL. Whenever a goal must be selected, a large number

of goals are sampled and are then adequately concatenated to the state st. The ensemble then

scores them. Because each critic has different initial weights, and there is some stochasticity

in their training, the values produced by the ensemble have some variance, i.e. disagreement.

Different notions of disagreement exist, but as the paper shows, simply basing the goal

selection strategy off of the standard deviation of the scores leads to very good results [67].

Value disagreement sampling (VDS) greatly outperforms baseline methods and is considered

a state-of-the-art training-goal selection method (or curriculum method for goal selection).
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Chapter 3

Dread Enforced Interactions for More

Optimal Sampling

In this work, we investigate the influence of goal selection during training on the evalua-

tion safety and performance of deep reinforcement learning policies over a subset of GMDPs

that models common robotic control problems.

3.1. Problem setting

As defined in Chapter 2.1.2.1, we consider GMDPs defined by tuples of the shape

(S, G, A, P, R, ρ0, ρg, T ). We consider G to be some continuous vector space.

Note that here, the GMDP formulation outlined in Chapter 2.1.2.1 is augmented by the

“goal sampling rate” or “resampling time” T . During both training and deployment episodes,

a new goal g ∼ ρg is sampled every [T > 1] GMDP timesteps, regardless of the current state

of the GMDP. We call the goal-change events “interactions” and they are described by tuples

(st, gt, gt+1), with t the current GMDP timestep, st and gt the current state and goal, and

gt+1 the goal at timestep t + 1.

We consider infinite-horizon episodes. We assume that R is a dense 1 reward function

(the vast majority of transitions have a non-zero associated reward) that is majorly based on

matching gt. Because DRL for robotics is negatively affected by early termination problems

[30][51], we assume positive reward signals, i.e. R(st, at, gt) ≥ 0 on all inputs.

A subset Sc of S are undesirable terminal states called crash states. Avoiding the crash

states is the only safety consideration of the system. Some examples of crash states include

a legged robot flipping on its back, a manipulator arm crossing some undesirable force

1. Some might argue that assuming dense rewards for robotics problems is unrealistic. However, as
mentioned in Chapter 1, our method seeks to achieve better evaluation safety by incentivizing unsafe
behaviour during training. We argue that because of this, our method is only tractable for training in
simulation. Thus we can safely assume access to privileged information that describes the state of the world.
Hence, dense reward functions are very tractably definable.



threshold, or a wheeled robot exiting its designated operational area. Again because of early

termination problems, these states do not have any associated negative reward terms.

This GMDP formulation models the behaviour of a low-level DRL policy responding to

robotic commands ∈ G set by some higher-level policy. One example would be a remote-

controlled car tasked with following linear and angular velocities requested by some joystick

controller: the high-level policy (the joystick) may issue new high-level goals (a desired

velocity and a steering angle) at any time that the low-level policy (the controller onboard

the car regulating power to the wheel motors) must immediately match. In this toy-car

scenario, crash-states would be collisions with surrounding obstacles. We desire low-level

policies that match requested goals to the best of their ability while still being

aware of safety considerations.

3.1.1. Optimization objectives

To study the influence of goal selection during training, we require a more expressive goal

distribution. We endow ρg with the ability to select future goals according to the current

state and goal.

In this setting, the DRL policy’s performance (J) and safety (Js) objectives are as such:

max J(π) = E gt∼♣g

at∼π(st,gt)
st+1∼P (st,at)



∞
∑

t=0

γtr(st, at, gt)

]

(3.1.1)

min Js(π) = E gt∼♣g

at∼π(st,gt)
st+1∼P (st,at)



∞
∑

t=0

✶ ¶st+1 ∈ Sc♢

]

(3.1.2)

where ♣g =











ρg(st, gt−1) if [t mod T = 0]

gt−1 otherwise

Notice that because we consider infinite-horizon problems with dense non-negative re-

wards, the safety objective (Eq 3.1.2) is already being optimized for as a byproduct of Eq

3.1.1. Visiting a crash-state ends the episode early, directly resulting in lower potential cu-

mulative rewards. Given an adequate discount factor γ, an optimal policy would avoid such

states. And so we pose a strong but principled assumption for the problems for which our

method is applicable: avoiding crash-states is the optimal strategy for the decision policy.

3.2. Method intuition

We posit that an optimal distribution of training goals exists such that policies πθ trained

under it visit less crash-states at evaluation time than when trained under a sub-optimal goal

distribution.
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An oracle goal selector ρg would presumably select goals that are neither too easy (already

solvable) nor too hard (intractable), yet still suitably handle catastrophic forgetting [28]

(perhaps by occasionally sampling easier goals) and exploration (perhaps by occasionally

sampling harder goals). The mechanics of learner agents being incredibly complex, we pose

three major hypotheses to render this problem tractable: (1) The probability of πθ crashing

after receiving a goal is a useful signal for goal selection, (2) An oracle would presumably

select goals with intermediate crash probabilities often, but also select easy and hard goals

occasionally to ensure the policy can handle the entire goal space, and (3) As the policy

learns to act upon them, goals that lead to crash-states implicitly become rarer and rarer;

making them more common would give the policy more experience related to crash-states

to learn from.

Named after the policy’s own intrinsic fear of crashing, we call the probability of crashing

after receiving a goal the “fear score”, given by a “fear function” (following Intrinsic Fear’s

naming scheme [32], see Chapter 2.2.2.2). Inspired by the hypothetical oracle outlined above,

we introduce a new agent to the policy’s training, the “Director” ρd
g, who uses the fear scores

to inform the selection of training goals in a way that is conducive to the policy’s training.

Because πθ is non-stationary, the likelihood of a given goal causing a crash is itself non-

stationary, and thus the fear function must be learned online, alongside πθ. This naturally

implies a game between the policy and the Director, where πθ must handle goals issued by

ρd
g, and ρd

g learns about the goal space G and its relationship to πθ’s crashes online, as πθ

improves.

The idea of selecting sub-goals that force the policy to reckon with unsafe states is

summarily similar to DAGGER’s intuition [50]. As mentioned in Chapter 2.2.2.1, dataset

aggregation (DAGGER) utilizes two agents, one being an expert, the other being an agent

that learns from the expert’s behaviour. By perturbing the expert’s behaviour, the learning

agent forces the expert to gather data from states the expert would not have otherwise

visited. In other words, by experiencing more states that are not part of an optimal policy’s

trajectory, DAGGER agents are still safer, more performant, and more generalizable after

training than baseline methods [50]. This hinges on the desirable exploration behaviour

induced by the perturbations applied to the expert’s behaviour. Similarly, we aim to select

goals that force the DRL policy to visit crash-states more often. By forcing the policy

into crash states, we fill the policy’s rollout buffer with more states that are near crash-

states (states that are few transitions away from crash states). By showing the policy more

examples of the states near crash-states, we posit (and empirically verify, see Chapter 4.5)

that the policy will learn to avoid such states, owing to the fact that crash-states terminate

the infinite-horizon episodes and are therefore undesirable, as mentioned in Chapter 3.1.1.

For the sake of simplicity, we initially formulate this as a zero-sum game. This follows

the formulation of numerous other works on adversarial training and goal selection for DRL
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[46][58][66]. However, because fully adversarial adversaries are often not the most conducive

to training DRL agents [14], we impose a sub-optimal sampling strategy upon the Director.

Using a hyperparameter, we control how adversarial the Director’s selected goals are (see

Chapter 3.4). By preventing the Director from acting in a fully adversarial manner, we pre-

vent the Director from acting in a way that might hinder the policy’s exploration behaviour.

Or rather, we shape the Director’s strategy so that the Director acts in a way that helps the

policy’s training; a cooperatively adversarial way.

3.3. Method: the Director’s strategy

For πθ, the task is to select an optimal sequence of actions in a GMDP to survive T

timesteps for a given a goal set during an interaction with the Director while also acting

upon it optimally. For ρd
g, the game is about selecting a single goal gt+1 every T GMDP

timesteps that will cause the policy to crash, conditioned on the information that the policy

is in given state-goal pair (st, gt), limited by the sub-optimal goal sampling strategy we

impose.

In this game, both agents optimize over a simple binary win condition W d
π (st, gt, gt+1) =

✶ ¶π(·♣gt+1) crashes within T steps♢. As mentioned in Chapter 3.1, the policy already im-

plicitly minimizes W d
π by default as part of its RL objective (Eq 3.1.1). The Director seeks

to maximize W d
π (i.e. maximize Eq 3.1.2).

The description of the Director’s task corresponds to a Bernoulli bandit defined by


C = S × G, A = G, R = W d
π



π
, with the context being partial interactions of the shape

(st,gt), the actions being the act of selecting the next goal gt+1, and the reward function

being the win condition W d
π . The policy’s non-stationary nature also influences the bandit’s

possible contexts (the policy visits different states depending on its training) and optimal

actions and reward structure (the goals that crash πθ change over training, which directly

also changes W d
π ).

Because of the bandit’s continuous action space and non-stationary nature, the Beta dis-

tribution used in standard Thompson sampling is ill-fitted (see Chapter 2.1.3 for a definition

of Thompson sampling). Following our hypotheses detailed in Chapter 3.2, we instead learn

a fear function FΨ : S × G × G → [0,1] on-policy. This neural network takes in interactions

and outputs fear scores representing crash likelihoods.

For the Director, the fear function FΨ corresponds to a Q function for the reward function

W d
π . In this Q function, the partial interactions (st,gt) correspond to the context and the

future goals gt+1 correspond to the actions. The result of applying FΨ on an interaction

(st, gt, gt+1) is the likelihood of ρd
g winning the interaction by selecting gt+1 in context (st, gt).

Assuming an oracle FΨ, an oracle fully adversarial Director might act by finding the optimal

goal g∗

t+1 ∈ G for the context (st, gt) such that FΨ



st, gt, g∗

t+1



≥ FΨ (st, gt, gt+1) ∀ gt+1 ∈ G.
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And so, similarly to the technique used in Thompson sampling, we effectively obtain ρd
g

by “inverting” FΨ. At every instance of the Director’s decision process, the Director receives

the current state of the agent and of its environment in the form of a partial interaction

(st, gt). A set Γ of uniformly-sampled gt+1 goals is then collected 2. The set is then used to

create many possible (st, gt, gt+1 ∈ Γ) interactions from the partial interaction. Finally, the

constructed interactions are scored using the fear network. Given enough sampled goals, we

recover through the fear scores an approximation of the optimal adversarial goal (subject to

the limitations we impose on ρd
g, see Chapter 3.4).

Because our novel goal selection strategy uses the fear network at its core with the goal

of producing better interactions to gather data from, we call it Dread Enforced Interactons

for More Optimal Sampling (DEIMOS). See Figure 3.1 for a visualization of our method.

Figure 3.1 – Visualization of our method’s main feedback loop. The Director emits goals
sampled from the fear network. Upon receiving and acting upon the goals, the agent crashes
or survives the goals. We then update the Director’s belief about the value of goals by
changing the fear network’s parameters. Then, the loop begins anew.

3.4. Disempowering the Director

It is natural to expect a fully adversarial and powerful Director to be too good at crashing

the policy, leading to poor goal sampling behaviour, or to catastrophic forgetting. But a fully

cooperative Director would not fare any better, as it would offer poor goal-space exploration

2. Note that we assume access to a uniform distribution over the goal space. This is tractable in our
problem setting, where the goal space is a small continuous vector spaces. In settings with more complex
goals (e.g., large vector spaces, images, or text goals), a more principled way of sampling goals would be
required.
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behaviour by always giving goals that are easy for the policy. We verify this empirically in

Chapter 4.5.

To address this, we “disempower” the Director, reining in its desirable adversarial pre-

dictions while avoiding their undesirable effects. This amounts to defining how the Director

selects the next goal gt+1 from the sample Γ of N possible goals 3, informed by the fear scores

Fs = FΨ(((st,gt)) × Γ) (with “×” the cartesian product).

We control how adversarially the Director acts by separating Γ into two “buckets” ac-

cording to a fear threshold. Being an adversarial agent, the Director always samples from

the bucket containing the highest fear scores. By changing the threshold that defines the

two buckets, we control the how cruelly the Director acts.

We define the threshold as a percentile p. Certain states are inherently riskier than

others, and so the fear networks outputs a higher baseline fear value for all possible goals.

For example, the same sampled goals for a quadrupedal robot would receive higher fear

values if the robot is presently in a stairway than if the robot is on flat terrain. By using a

percentile value, the threshold naturally adapts to the baseline fear for a given state.

The Director samples goals above the p-th percentile of Fs. With p = 10, the Director acts

mostly cooperatively; it discards all goals in the 10th lowest percentile and then uniformly

samples gt+1 from the rest of Γ. With p = 90, the Director acts mostly adversarially; it

discards all goals outside the 10th highest percentile and then uniformly samples gt+1 from

the remaining goals.

3. N is an hyperparameter that controls how many suggested future goals are sampled and then scored
by the fear network. In all of our experiments, N = 100.
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Chapter 4

Experiments

In this chapter, we present an empirical analysis of DEIMOS. We introduce the experi-

mental training and evaluation environments in Chapter 4.1. We detail a series of ablations

upon DEIMOS in Chapter 4.2. We explain our selection of baseline methods in Chapter 4.3.

Finally, we present the results of our experiments in Chapter 4.5.

4.1. Environments

4.1.1. Toy problem: Particle Gym

In this section, we define a toy problem of our own design tailored to evaluate DEIMOS

and the baselines in study.

In Particle Gym, a unit-mass particle spawns at the origin (point (0,0,0)) in a three

dimensional cube. This cube is 2000 length units a side, and the particle crashes if it exits it.

From the point of view of the particle, should any component of the (x,y,z) values describing

its current position go above (below) 1000 (−1000), it crashes.

The physics of the environment are simple:

(1) At every timestep, the environment receives the policy’s actions. The actions are

three-dimensional vectors that are interpreted as forces upon the particle.

(2) The forces are halved and are then directly added to the particle’s velocity.

(3) The absolute value of the components of the resulting (x,y,z) velocities can never

exceed some maximal velocity. This maximal velocity is set so that many timesteps

are required before the particle comes close to the edges of the cube. These edges

correspond to the only states where crashes are possible. DRL has trouble reasoning

about long-horizon problems, so needing to experience many timesteps before it is

possible to crash makes the environment harder.

(4) The particle’s position is then updated by adding the resulting velocities to it.



(5) The state is sent to the policy so that it can act upon it. The state given to the policy

is a vector containing the particle’s (x,y,z) velocities and positions, the last action

output by the policy, and the current goal.

Three versions of the environment exist:

(1) Absolute: the goals are absolute positions in space (which can fall outside the cube).

The reward is based on the distance from the particle to the desired position.

(2) Directional: the goals describe requested velocities. The reward is based on the

difference between the particle’s (x,y,z) velocities and those described in the current

goal.

(3) Relative: the goals are relative positions in space. When selecting a goal, an absolute

position in space is first selected. Every timestep thereafter, the current distance from

the policy to the absolute position is what is sent to the policy as gt. The goal’s

components thus become closer and closer to (0,0,0) if the particle gets closer to its

target, or increase if the particle gets further away. The reward is based on the norm

of the goal, i.e. the current distance from the particle to the target position.

In all three versions, the policy must learn to achieve the goals to the best of its ability

while keeping the particle inside the cube. See Figure 4.1 for a visualization. Because the

reward signals are all strictly positive (never ≤ 0), and because we consider infinite-horizon

episodes, staying alive is always preferable to terminating the episode early.

Particle Gym is a massively parallel environment where 2000 environments are simulated

at the same time. Every simulation timestep, 2000 particles receive forces, 2000 observations

are sent to the policy, and the policy produces 2000 actions in response. See Figure 4.2 for

a visualization of what a massively parallel environment entails.

All results for Particle Gym come from training 10 DRL seeds using a PPO policy.

4.1.2. Legged Gym

We implement DEIMOS in Legged Gym [51], a state-of-the-art simulator for legged robots

based on Isaac Gym [36]. The simulator includes noisy terrain surfaces and steep stairs

and slopes, along with banal flat terrain. Similar to Particle Gym, this is a massively

parallel simulator where 4096 robots are simulated at the same time (without robot-to-

robot collisions). See Figure 4.2 for a visualization of this parallelization. As the policy

performs better (worse) according to the reward function, the robots are placed in areas

of increasing (decreasing) difficulty. This increasing difficulty is reflected by the increased

steepness of the slopes and stairs and the level of noise applied to the uniformly-noised

terrain. The state given to the robot is comprised of the current robotic state, a height map

of the surrounding terrain, and the current goal. During training, the friction coefficient

of the terrain is randomized, and the robots are subjected to random force pushes. This
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Figure 4.1 – In Particle Gym, the particle starts every episode at (0,0,0) (in black). Three
variations exist. In the directional case, goals are desired velocities (visualization in red).
In the relative case, goals are the distance from the particle’s current position to a set
point in space (visualization in green). In the absolute case, goals are an absolute position
in space that the particle must reach (visualization in blue). In all variations, should the
particle exit the [−1000,1000]3 cube, the episode terminates.

is a standard practice for simulation environments for legged robots that encourages better

generalization behaviour.

We study two different robotic morphologies (shown in Figure 4.3).

(1) Quad: in this version, a quadrupedal robot modelled after the Go1 robot must follow

(x,y,angular) velocity goals. The goals are in [−1,1]3.

(2) Quad+arm: in this version, a quadrupedal robot with an arm on board (modelled

after a Go1 robot with a mounted ReactorX arm) must follow the same velocity goals
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as Quad, with the addition of relative positional (x,y,z) goals that the arm’s end

effector must match. The goals are in [−1,1]6. This is a very unstable morphology

[17]. The shifting weight of the arm makes traversing steep stairs at fast speeds while

also matching desired positional arm goals incredibly difficult.

In both variants, the reward function is primarily based on the goal-matching performance

but also includes terms to make learning walking gaits easier [51]; we only report a weighted

aggregate of the goal-matching rewards. No penalty for crashing is present. Crashes are

registered when any part of the robot’s base touches any part of the terrain.

We train using [T10 = 10 simulated seconds = 500 timesteps], but to showcase ag-

ile behaviour and generalization to faster goal changes, we also evaluate using

[T2 = 2 simulated seconds = 100 timesteps]. The T2 timing in particular requires rapidly

and responsively handling changes in momentum. For the Quad+arm case, the quickly

shifting center of weight of the morphology caused by the movements of the arm complicates

things further.

All results for Legged Gym come from training 30 DRL seeds using a PPO policy. While

we do not conduct experiments on the real hardware because it would be infeasible to evaluate

enough seeds to obtain accurate results, we do evaluate the seeds in a different evaluation

environment than the one they are trained in. While the general terrain itself is the same,

we remove all friction coefficient randomization and the random force pushes that the robots

are subjected to during training.

4.1.3. Evaluation and goal selection

In both environments, we evaluate using two different goal distributions ρg.

Figure 4.2 – Visualization of the Legged Gym environment. Many robots are simulated in
parallel, all controlled by a single policy. The policy must learn to issues commands such that
the robots walk on flat terrain, noised terrain, sloped terrain, and stairs without crashing.
Picture credit: Legged Gym [51].
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Figure 4.3 – Pictures of Quad and Quad+arm, modelled after the Unitree Go1 robot.
Quad+arm additionally has a Interbotix ReactorX arm onboard.

— Naive: the “Naive” ρg is a uniform distribution over G. This covers all goals in all

states indiscriminately.

— Adversary: the “Adversary” ρg is a fully adversarial Director that leverages a fear

network trained for 1500 timesteps after the training of πθ has concluded. The fear

network used by the Adversary is trained independently from the fear network used

by the Director to suggest training goals when using DEIMOS. We use the Adversary

to evaluate the policy’s robustness to adversarial attacks upon its goals, where an

attacker would selects goals that are most likely to crash the robot.

All environment randomization (friction, random pushes, random terrain) is disabled

during evaluation.

4.2. Implementing DEIMOS

The fear network used by DEIMOS’s Director is trained using a binary cross-entropy

loss on interactions
[

(st, gt, gt+1) : W d
π (st, gt, gt+1)

]

sampled from πθ’s on-policy rollout buffer.

The binary cross-entropy loss is weighted so that the crash and survival observations in the

batches sent to FΨ are of equal contribution to the loss term. As output, FΨ produces a

value from 0 to 1.
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It is important to note that the fear network is not calibrated. Its only predictive power

is a ranking of different gt+1 goals for a given partial interaction (st,gt). In other words,

should a state st be particularly perilous, all possible fear scores will be relatively high. For

example, in Particle Gym, essentially all possible gt+1 goals for point A = (−999,0,0) would

receive higher fear scores than the goals for point B = (0,0,0) by virtue of point A being

closer to edge of the [−1000,1000]3 cube. This does not hinder DEIMOS, as it only requires

a relative ranking of future goals for a given (st, gt) to inform its selection process.

It is also important to note that the first goal issued during an episode is selected ran-

domly. Indeed, immediately after resetting the environment, we seek to select g0. However,

to use the Director, we require a previous goal. But no g−1 or s−1 is available to form the

partial interaction (s−1, g−1) that the Director requires to select g0. In all environments, g0

is instead sampled from a uniform distribution over G.

4.2.1. Ablations

To accurately characterize how the cruelty of the Director impacts the policy’s training,

we cover the [0,1] range of possible p values. We present results for p = [10,25,50,75,90],

respectively identified as “p10” through “p90”.

We also present results for a fully cooperative Director that selects goals using the decision

rule
[

argmingt+1

]

over the fear scores and a fully adversarial Director that selects using the

decision rule
[

argmaxgt+1

]

. They are respectively identified by “Coop” and by “Antagonist”.

4.3. Baseline methods

— Hand-made curriculum: For both variants of Legged Gym, we compare against

a hand-made curriculum. We refer to this hand-made curriculum as “CL”. In CL,

we slowly increase the possible range of goals from which we uniformly sample. Em-

pirically, this leads to a training distribution that is conducive to learning. This

curriculum is based on the curriculum used in the original Legged Gym work [51].

— Uniform Sampling: In contrast to the CL baseline, the “Uniform” baseline uses

no goal selection strategy whatsover. It simply samples goals uniformly from the full

goal space G.

— Random Network Distillation: Traditionally, RND is used to generate rewards

for the environment’s transitions (see Chapter 2.2.1.1). In this work, we instead apply

RND to the space of goals. We sample many different gt+1 goals and have both the

frozen and trained networks score them for a single (st, gt). We then select the goals

with the highest surprise, effectively using the surprise of the policy to explore the

goal space.
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— Value Disagreement Sampling: We apply VDS to our environments [67]. See

Chapter 2.2.3.1 for an outline of VDS. VDS already tackles a very similar problem

to the one that we tackle. Where we desire to select goals in a way that trained

policies are safer while still optimizing for reward performance, VDS only optimizes

for reward performance. Of course, since we assume that a truly optimal policy would

never crash, VDS also implicitly aims at producing safer policies.

All VDS results in this work utilize an ensemble of 10 critics.

— VDS and DEIMOS: For Legged Gym, we find empirically that VDS seems to be

the best baseline in study. VDS offers great initial goal-space exploration by using the

policy’s own uncertainty about the difficulty of the goals to select the future goals.

However, we find that about halfway through training, VDS-trained policies start

experiencing very few crashes. See the figures in Appendix A for the related training

curves.

As per our initial intuition, experiencing more crashes during training should help the

VDS-trained policies learn not to crash. For Legged Gym only, we showcase a simple

training schedule utilizing both VDS and DEIMOS. Goals are fully sampled from VDS

until halfway through training (1500 training steps), and then they are fully sampled

using DEIMOS until the end of training. We use what we deem to be among the best

performing version of DEIMOS for Legged Gym: p = 75. In our results, this method

is identified by “VDS+p75”.

4.4. Terminology

Here, we present a short recapitulation of the terms we use to identify key parts of our

experimental results.

(1) A timestep refers to a transition (st, at, rt, st+1) in the environment.

(2) The Director is the agent used in DEIMOS to select goals during training. It

selects goals above some percentile threshold p. In our results, the different p values

of DEIMOS are identified by “p” and the p value. For example, DEIMOS with p = 50

is identified by “p50”.

(3) The Naive is a uniform distribution over the goal space G from which goals are

sampled during evaluation.

(4) The Uniform baseline is a uniform distribution over the goal space G from which goals

are sampled during training. Its goal selection strategy is identical to the Naive’s,

but for readability reasons we refer to them by different names.

(5) The Adversary is a fully adversarial Director from which goals are sampled during

evaluation.
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(6) The Antagonist goal distribution is an ablation of DEIMOS where goals are selected

using the argmax of the fear scores. Its goal selection strategy is identical to the

Adversary’s, but for readability reasons we refer to them by different names.

(7) The Coop goal distribution is an ablation of DEIMOS where goals are selected using

the argmin of the fear scores.

4.5. Results

Accurately evaluating robotic RL is difficult. In our problem setting, reducing crashes is

obviously desirable, but so is increasing rewards. Often, doing one comes at the cost of the

other. Lowering the population standard errors for both metrics is also important.

Because of the very large amount of data to present, we present a succinct visualization

of our evaluation results in the form of box-and-whisker plots. This captures both the spread

of the populations of trained agents and their expected performance and safety. While these

plots often present overlapping boxes for some environments, we deem our results significant;

there exist consistent trends across environments.

We caution the reader against only looking at the performance (reward) results. Not

crashing often means recognizing which states are unsafe, and not listening to commands

that drive the robot towards such states. As such, the cost of avoiding a crash is often

paid in rewards, at least myopically. Less crashes with slightly less timestep-wise rewards

is a desirable outcome. However, in some cases, the policies achieve a very low amount of

crashes, but also a very low amount of rewards. This implies that the policies are useless,

and learned not to crash by completely ignoring the goals. The reader should focus on the

safety (crash) results; the performance results should only be used to ensure that the policy

actually learned the task.

As for the training curves for both environments, because we are evaluating different

goal-selecting methods, it follows that the reward and crash behaviours during training are

also intrinsically tied to the training methods in study. The reward and crash data during

training are idiosyncratic to their given goal distribution and cannot be cross-compared with

results obtained from another distribution. These curves are especially unclear for Legged

Gym, and so we omit them from the main body of this work. They are presented in Appendix

A. Thanks to the simplicity of Particle Gym, its training curves are clearer and are shown

in Chapter 4.5.1.

We present results for 4M timesteps for Particle Gym and ≈ 8.2M timesteps for Legged

Gym. For the evaluation results, we present the average reward and the total number of

crashes.
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4.5.1. Training results for Particle Gym

Figure 4.4 – Crashes during training for10 PPO random seeds for all three variants of
Particle Gym. Most p values were omitted for readability. On the left are the results
obtained from the different ablations applied to DEIMOS. On the right, we compare one
representative p value for DEIMOS to the results obtained from the baseline methods.
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In Figure 4.4 we find the results for training 10 PPO random seeds in the three variants

of Particle Gym. The Absolute variant was trained for 5000 steps, while the Directional

and Relative variants were trained for 2000. On the left, we find the results for the different

versions of DEIMOS. On the right, we find the results comparing DEIMOS to the baseline

methods. The results shown in Figure 4.4 were obtained from applying a rolling window

average to the very noisy data obtained from training;

The reader might notice that the results shown in Figure 4.4 show more than one crash

per timestep for some timesteps. Recall that Particle Gym is a massively parallel environ-

ment where 2000 environments are simulated at once. Each training step shown here thus

corresponds to 2000 parallel timesteps. This is why more than one crash can happen on a

single timestep. In truth, early in training, some timesteps had 2000 crashes at once.

Notice that in some variants, some methods seem not to have reached convergence yet.

This is normal. When subjected to a particularly sub-optimal goal distribution, the policies

take much more time to converge. We desire DRL that converges in a reasonable amount of

time, thus still we only train for a limited number of timesteps.

As shown in Figure 4.4, we find that RND does not lend itself well to generating training

goal distributions for Particle Gym. The two other baselines, Uniform and VDS, seem to

perform fairly well in all three cases, but these training curves are not necessarily representa-

tive of their true safety and performance after training. The goal distribution during training

greatly influences the behaviour of the policies: the policies are tasked with achieving the

goals issued from these distributions. So the curves presented in Figure 4.4 cannot truly be

compared to one another due to their idiosyncratic goal distributions.

Another trend is that the Antagonist and Coop Directors are not good at reducing

crashes. One interesting trend is that p = 90 seems to achieve remarkably similar behavior

to the Coop and the Antagonist versions of DEIMOS, most probably because of a lack of

goal diversity: the Director only samples in the top 10th percentile of the fear scores.

4.5.2. Evaluation results for Absolute

Figure 4.5 presents the evaluation results for the Absolute environment. On the left, we

find results for the policies when they respond to goals selected by the Naive goal distribution.

On the right, we find results for the policies when they respond to goals selected by the

Adversary.

Against the Naive ρg, the value of p for DEIMOS seems to have little influence over

the safety behaviour after training. Most versions of DEIMOS produce similar policies. The

baselines hold similarly little influence. RND-trained policies experience the most crashes

(and variance over crashes) out of all the baselines. VDS and Uniform produce similar policies

in terms of crashes, but Uniform policies receive markedly higher rewards. This implies that
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Figure 4.5 – Evaluation results for 10 PPO seeds in the Particle Gym Absolute environment.

VDS-trained policies did not successfully learn the task. With p = 25 and p = 75, DEIMOS

matches VDS and Uniform. With p = 50, we obtain high rewards but slightly higher median

crashes. The single highest possible rewards are obtained by the Antagonist, as evidenced

by the top whisker for that method.

Against the Adversary ρg, the goal distribution during training holds more impor-

tance. Every method experiences significantly more crashes. Again, Uniform’s policies ob-

tains the same amount of crashes as VDS’s but markedly better rewards. DEIMOS with

p = 25 matches Uniform and VDS. Again, the single highest possible rewards are obtained

by the Antagonist, as evidenced by the top whisker for that method.

Overall, we identify Uniform and DEIMOS with p = 25 as the best methods for Absolute.
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4.5.3. Evaluation results for Relative

Figure 4.6 – Evaluation results for 10 PPO seeds in the Particle Gym Relative environment.
Coop omitted because of scaling issues. Very small boxes for crashes are not mistakes or
visual artefacts; some methods achieved ≈ 0 crashes.

Figure 4.5 presents the evaluation results for the Relative environment. On the left, we

find results for the policies when they respond to goals selected by the Naive goal distribution.

On the right, we find results for the policies when they respond to goals selected by the

Adversary.

Against the Naive ρg, the value of p for DEIMOS seems to have little influence over the

safety behaviour after training. Most versions of DEIMOS produce similar policies, except

for p = 90.

The Antagonist completely hindered its policies’ training. Its policies obtained very poor

rewards, which is related to why they appear to act safely: the policies learned not to move
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the particle for fear of crashing. The Coop Director was omitted because of scaling issues,

but its results are similar to the Antagonist’s.

RND-trained policies experienced the most crashes (and variance over crashes) out of

all the baselines, yet very low rewards. This implies that RND policies learn to move in

random directions, ignoring their goals. VDS and Uniform produce similar policies in terms

of both crashes and rewards. With p = 10, p = 25, and p = 50, DEIMOS matches VDS

and Uniform. The single highest rewards are obtained by the Antagonist, at the cost of very

large variance.

Against the Adversary ρg, the goal distribution during training holds more impor-

tance. Interestingly, we observe an increase in crashes for the policies that experienced few

crashes against the Naive ρg, yet a decrease for the policies that were less safe. This might

imply that those policies learned to be resistant against adversarial goals at the cost of poorer

behaviour against random goals.

Here, Uniform’s policies obtain more rewards than VDS’s, but also more crashes. As

such, we deem VDS to be the best baseline in study, obtaining the lowest amount of crashes

for the baseline methods and adequate rewards. DEIMOS with p = 50 obtains great rewards

with low variance, and very few crashes.

Overall, we identify DEIMOS with p = 50 as the best method for Relative. VDS,

Uniform, and DEIMOS with p = 25 come close.

61



4.5.4. Evaluation results for Directional

Figure 4.7 – Evaluation results for 10 PPO seeds in the Particle Gym Directional environ-
ment.

Figure 4.7 presents the evaluation results for the Directional environment. On the left, we

find results for the policies when they respond to goals selected by the Naive goal distribution.

On the right, we find results for the policies when they respond to goals selected by the

Adversary.

Against the Naive ρg, the value of p for DEIMOS holds more importance than for the

Absolute and Relative cases.

Both the Coop agent and the Antagonist completely hindered their policies’ training.

They obtained both the poorest rewards and the most crashes. Again, this implies that the

policies learned to not move at all.
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RND-trained policies also experienced the worst rewards and the most crashes (and

variance over crashes). VDS and Uniform again produce similar policies in terms of both

crashes and rewards. With p = 10, p = 25, and p = 50, DEIMOS matches VDS and Uniform.

Against the Adversary ρg, for the baseline methods, we observe the same trends as

against the Naive ρg. We find that in particular, DEIMOS with p = 25 obtains the highest

rewards (equal to Uniform and VDS) and the least crashes. The variance for both metrics

is also great.

Overall, we identify DEIMOS with p = 25 as the best method for Directional.

4.5.5. Evaluation results for Quad

Figure 4.8 – Results for 30 PPO seeds in the Quad environment with the T2 goal resampling
timing.
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Figure 4.9 – Results for 30 PPO seeds in the Quad environment with the T10 goal resampling
timing.

Figures 4.8 and 4.9 present the evaluation results for the Quad environment with goal

resampling timing T2 and T10, respectively. As a reminder, this means that the goals re-

spectively change every 2 seconds (100 timesteps) and 10 seconds (500 timesteps). For both

figures, on the left, we find results for the policies when they respond to goals selected by

the Naive goal distribution. On the right, we find results for the policies when they respond

to goals selected by the Adversary.

Against the Naive ρg, for both timings, the value of p for DEIMOS holds little im-

portance. In fact, almost all the methods in study obtain similar amounts of crashes. As

shown in Figure 4.8, we find that DEIMOS experiences high variance for almost all p values

compared to the baseline methods, yet similar median policies. Overall, VDS slightly out-

performs the baselines, obtaining higher rewards for similar safety behaviour. We find that

VDS+p75 obtains policies that are similar to VDS alone. We find that RND does much
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better here than in the Particle Gym environments. Both the Coop Director and the Antag-

onist perform poorly in terms of rewards (and slightly worse than other DEIMOS versions

in terms of crashes).

Against the Adversary ρg, for the baseline methods, the goal distribution during

training holds more importance on evaluation safety. Coop produces the worst policies

both in terms of rewards and of crashes. All baseline methods produce similar policies.

For DEIMOS, the best p values (p = 75 and p = 90) produce policies with fairly safe

and performant behaviour. As shown in Figure 4.8, against the T2 timing, the variance is

adequately low, but against the T10 timing shown in Figure 4.9, variance is quite high, which

is not desirable. We observe that VDS+p75 obtains the best policies for both timings, with

quite low variance, the lowest amount of crashes, and very high rewards.

Overall, we identify VDS+p75 as the best method for Quad for both timings. We believe

that the much improved behaviour against the Adversary compared to the other methods is

worth the very slightly worse behaviour against the Naive ρg compared to the second-best

method, VDS.

4.5.6. Evaluation results for Quad+arm

65



Figure 4.10 – Results for T2 for Quad+arm. All DEIMOS versions produce better policy
populations that the baselines, except for VDS. The VDS+p75 schedule does best overall,
with almost identical Naive results as VDS and better Adversary results.

Figure 4.11 – Results for T10 for Quad+arm. Again, almost all DEIMOS versions produce
better policy populations that the baselines, except for VDS. The VDS+p75 schedule does
best overall, with almost identical Naive results as VDS and better Adversary results.

Figures 4.10 and 4.11 present the evaluation results for the Quad+arm environment with

goal resampling timings T2 and T10, respectively. For both figures, on the left, we find results

for the policies when they respond to goals selected by the Naive goal distribution. On the

right, we find results for the policies when they respond to goals selected by the Adversary.

Against the Naive ρg, for both timings, we identify DEIMOS with a p value of around

50 as the best version of DEIMOS. Here, all baseline methods produce poor policies with

very high variance, with the exception of VDS. In fact, VDS and VDS+p75 best all of the

other methods, both in terms of median and of variance.

Against the Adversary ρg, we observe the same trends as against the Naive ρg for the p

values of DEIMOS. We identify p = 50 as the best p value. Contrarily to the results obtained

in the Quad environment, the variance for the T2 timing is higher than the variance for the

66



T10 timing (shown in Figures 4.10 and 4.11, respectively). We find that all of the baseline

methods perform poorly with the exception of VDS. We identify VDS and VDS+p75 as the

best methods, with VDS+p75 obtaining more rewards, less crashes, and less variance than

VDS.

Overall, we identify VDS+p75 as the best method for Quad+arm for both timings.

4.5.7. Discussion

Against the Naive ρg, in general, the goal distribution during training holds little

influence on safety after training. For most environments, the value of p for DEIMOS also

seems to have little influence over the reward and safety behaviour after training. Regarding

the baselines, we identify VDS as the best baseline method. The Uniform goal distribution

also obtains similar results for Particle Gym. In Particle Gym, DEIMOS either matches

or bests the best baseline method. In Legged Gym, VDS+DEIMOS either matches or

bests the best baseline method, VDS.

Against the Adversary ρg, the goal distribution during training holds more impor-

tance. In Particle Gym, DEIMOS with an adequate p value produces better policy popu-

lations than the baseline methods. In Legged Gym, VDS+DEIMOS with p = 75 seems to

be the best method, both in terms of variance reduction and of median safety and rewards.

Otherwise, VDS has a noticeable edge over the other baselines, and seems to perform slightly

better against the Naive ρg overall. The other baselines do poorly, and especially poorly in

Quad+arm.

Overall, we identify VDS+p75 as the best overall method for Legged Gym, and DEIMOS

with p = 25 as the best method for Particle Gym.

In all environments, by looking at the median policy safety and rewards (and their vari-

ance), we notice an interesting trend: the different p values for DEIMOS seem to produce a

gaussian curve (this curve is most evident against the Adversary, especially in Figures 4.7,

4.10 and 4.11). Indeed, notice that in all environments, Coop fares poorly. By increasing

the p hyperparameter, the safety and reward metrics (including the population variance) im-

prove until the best p values (around p = 25 for Particle Gym and around p = 50 for Legged

Gym), and then the metrics worsen until reaching the Antagonist DEIMOS. Interestingly,

Coop and Antagonist produce policies with similar metrics.

The similar behaviour of a fully adversarial and of a fully cooperative training environ-

ment distribution was also observed in Generalization Games for Reinforcement Learning

[15], where a DRL agent called “nature” generated Minigrid [11] environments for a sec-

ond DRL agent to solve. Particle Gym and Legged Gym are continuous environments with

dense reward functions; Minigrid is a discrete environment with a sparse reward function.

While in no way conclusive, we observe some evidence that for reinforcement learning, fully
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adversarial and fully cooperative agents that act as part of the training environment (like

DEIMOS’s Director or the aforementioned “nature”) produce similar populations of policies.

The cooperative Director is too kind and produces policies that are ill-equipped to deal with

the rigors of the evaluation environment. The antagonist Director has the potential to pro-

duce great policies; however, its cruel nature can also hinder the policy’s training, leading

to relatively bad median policies.

4.6. Informing goal selection using a single network

Most methods that tackle the task of goal selection during training utilize a GAN to select

the future goals [23]. These training setups mostly require introducing at least two additional

neural networks (the discriminator and the generator) to the DRL agent’s training. Moreover,

discriminator-generator setups are famously difficult to train [20], and this is rendered even

harder by the presence of the DRL agent. This goal selection regime becomes a complex

training setup with three agents influencing one another. We eschew the traditional three-

agent setup of generator, discriminator, and DRL agent; we instead rely on a single additional

network.

Other similar works leverage a training setup of online adversarial DRL agents [14][9].

Online adversarial DRL agents are very slow to train. They require many additional neural

networks 1. These setups often require intricate hyperparameter and/or environment tuning

to prevent one agent from overpowering the other.

To our knowledge, the only other state-of-the-art goal-selection method that directly

utilizes data sampled from the policy’s rollouts like DEIMOS is VDS [67]. VDS is an

ensemble method and thus requires at least three additional networks. In contrast to the two

other types of methods outlined above, VDS is actually very stable to train. However, the

requirement of an ensemble of networks implies that utilizing VDS leads to slower training

because updating neural parameters is a very computationally costly process.

In DEIMOS, a single additional network is required. The simplicity of our method comes

at the cost of goal expressivity. Like VDS, our method would not handle generating image

goals or goals over large vector spaces well.

As shown in Table 4.1, this simplicity results in fast simulation. While DEIMOS is slower

than the simpler baseline methods, it still obtains quite high simulation frames per second

(FPS). The slowest method in study is VDS. Note that resetting the environments after

crashes is costly, so methods that produce unsafe policies are slightly penalized in terms of

FPS.

1. Because different DRL methods utilize different numbers of neural networks, the amount of additional
neural networks required by such methods varies. In any case, it is some multiplicative factor of the base
DRL policy’s number of neural networks.
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Simulation frames per second during training

Method Absolute Directional Relative

DEIMOS 276000 ± 5000 274000 ± 2000 268000 ± 3000
RND 284000 ± 5000 270000 ± 4000 272000 ± 3000
Uniform 331000 ± 7000 329000 ± 5000 332000 ± 3000
VDS 125000 ± 2000 119000 ± 1000 118000 ± 1000

Method Quad Quad+arm

DEIMOS 87000 ± 1000 75000 ± 4000
RND 94000 ± 1000 70000 ± 4000
Uniform 101000 ± 1000 78000 ± 4000
VDS 70000 ± 1000 63000 ± 1000
CL 101000 ± 1000 75000 ± 4000

Table 4.1 – Frames per second across all parallel environments during training, rounded to
the nearest thousand, ± STD Error.
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Chapter 5

Conclusion

We proposed DEIMOS, a novel training-goal selection method for deep reinforcement

learning in GMDP problems. In this method, a neural network called the “fear network”

learns to predict the learner agent’s crashes after receiving a new goal. This fear network

parameterizes a new agent that we introduce, the “Director”. The Director utilizes the fear

network to inform its selection of the goal to issue to the policy. By using an appropriate

sampling strategy, the Director enables more reliable training of DRL policies for a subset

of GMDP problems compared to baseline methods.

We conduct experiments in challenging quadruped locomotion and manipulation tasks

and variants of a generalist toy problem. We show that our method improves trained policy

population variance while also either improving or conserving the median and mean crashes

and rewards compared to the best baselines for all evaluation environments. We show that

fully cooperative and fully antagonist Directors seem to produce similar policies for the

training and evaluation environments that we employ.

In the future, we plan to compare the real-world safety of the different methods in

study on real hardware. We believe that DEIMOS will enable easier transfer of policies from

simulation to the real world. We also plan to extend this work to more training environments.

We would also like to investigate the possibility of training a fear network to work on the

real hardware. We would then be able to use the fear scores to ignore unsafe commands or

implement an “emergency stop” when the fear scores become too high. This would lead to

smarter and safer higher-level controllers for embodied DRL.

One weakness of DEIMOS is that it requires access to a uniform distribution over the

possible goals, and it also requires that the goals that are possible during training are the same

as those that are possible during deployment/evaluation. To obtain an even stronger method,

we would like to parameterize the process that samples the goals during goal generation.

Instead of assuming access to a uniform distribution, we could learn a neural network to

noisily generate likely goals in the goal space. Viewed from an RL perspective, this is similar



to treating the fear network used in DEIMOS as a critic, and learning an accompanying

actor to select actions for it. This would obviously complicate the training of the Director,

but it would also enable us to generate image, text, or large vector-space goals.

In general, we believe that such “particle-based” methods are under-utilized in the current

machine learning field. The idea of generating data by leveraging the capability of neural

networks to handle massive input batches is quite simple, and could be applied to many

different fields. We plan on conducting more research involving this idea in the future.
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Appendix A

Additional results for Legged Gym

Here, we present additional results for Legged Gym.

Figure A.1 – Reward and safety training curves for Quad.



Figure A.2 – Reward and safety training curves for Quad+arm.

The curves in Figures A.1 and A.2 reflect the policy’s goal-matching and goal-crashing

behaviours. As such, they cannot truly be compared against one another: each curve is id-

iosyncratic to their goal-selection method. Pitting the policies against another goal-selecting

method during evaluation shows behaviour that often belies the curves presented here.

Still, we can infer further supporting evidence of the findings presented in 4.5. Both

for Quad and Quad+arm, we observe that Antagonist produces policy populations with

large standard errors. In Quad+arm, we also clearly observe that Coop similarly produces

high-variance populations.

We also verify that VDS and VDS+p75 indeed produce policies in the way that we

had intuited in Chapter 4.3. Both in Quad and Quad+arm, the two methods’ curves are

obviously very similar (since both are simply sampling using VDS). After DEIMOS takes

over after 1500 timesteps, we observe a change in the trajectory of the curve. In Quad, the

policies experience an heightened number of crashes until the end of training. This makes

sense, as DEIMOS indeed samples adversarial goals. In Quad+Arm, the policies initially

suffer the same fate, crashing more often than when trained with VDS. But then the policies

quickly adapt, leading to even less goals than before DEIMOS took over.
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