Afficher la notice

dc.contributor.authorSlegers, Antoine
dc.contributor.authorChafouleas, Geneviève
dc.contributor.authorMontembeault, Maxime
dc.contributor.authorBedetti, Christophe
dc.contributor.authorWelch, Ariane E.
dc.contributor.authorRabinovici, Gil D.
dc.contributor.authorLanglais, Philippe
dc.contributor.authorGorno-Tempini, Maria Luisa
dc.contributor.authorBrambati, Simona Maria
dc.date.accessioned2021-10-19T12:13:36Z
dc.date.availableMONTHS_WITHHELD:12fr
dc.date.available2021-10-19T12:13:36Z
dc.date.issued2021-10-07
dc.identifier.urihttp://hdl.handle.net/1866/25767
dc.publisherElsevierfr
dc.rightsCe document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d’utilisation commerciale - Pas de Modification 4.0 International. / This work is licensed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License.
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
dc.subjectPrimary progressive aphasiafr
dc.subjectBiomarkersfr
dc.subjectConnected speechfr
dc.subjectNatural language processingfr
dc.subjectAlzheimer’s diseasefr
dc.subjectDifferential diagnosisfr
dc.subjectTelemedicinefr
dc.titleConnected speech markers of amyloid burden in primary progressive aphasiafr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté des arts et des sciences. Département de psychologiefr
dc.identifier.doi10.1016/j.cortex.2021.09.010
dcterms.abstractINTRODUCTION Positron emission tomography (PET) amyloid imaging has become an important part of the diagnostic workup for patients with primary progressive aphasia (PPA) and uncertain underlying pathology. Here, we employ a semi-automated analysis of connected speech (CS) with a twofold objective. First, to determine if quantitative CS features can help select primary progressive aphasia (PPA) patients with a higher probability of a positive PET amyloid imaging result. Second, to examine the relevant group differences from a clinical perspective. METHODS 117 CS samples from a well-characterised cohort of PPA patients who underwent PET amyloid imaging were collected. Expert consensus established PET amyloid status for each patient, and 40% of the sample was amyloid positive. RESULTS Leave-one-out cross-validation yields 77% classification accuracy (sensitivity: 74%, specificity: 79%). DISCUSSION Our results confirm the potential of CS analysis as a screening tool. Discriminant CS features from lexical, syntactic, pragmatic, and semantic domains are discussed.fr
dcterms.isPartOfurn:ISSN:0010-9452fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposanthttps://doi.org/10.1016/j.cortex.2021.09.010fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleCortexfr


Fichier·s constituant ce document

Vignette

Ce document figure dans la ou les collections suivantes

Afficher la notice

Ce document est mis à disposition selon les termes de la Licence Creative Commons 
Attribution - Pas d’utilisation commerciale - Pas de Modification 4.0 International. / This work is licensed under a 
Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License.
Droits d'utilisation : Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d’utilisation commerciale - Pas de Modification 4.0 International. / This work is licensed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License.