Show item record

dc.contributor.advisorCornea, Octavian
dc.contributor.authorFontaine, Paul
dc.date.accessioned2021-01-22T15:51:36Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2021-01-22T15:51:36Z
dc.date.issued2020-12-16
dc.date.submitted2020-08
dc.identifier.urihttp://hdl.handle.net/1866/24343
dc.subjectThéorie de Morsefr
dc.subjectHomologie de Morsefr
dc.subjectCatégorie trianguléefr
dc.subjectDécomposition en cône itéréfr
dc.subjectFonctions de Morse en position génériquefr
dc.subjectMorse theoryfr
dc.subjectMorse homologyfr
dc.subjectTriangulated categoryfr
dc.subjectIterated cone decompositionfr
dc.subjectGeneric pair of Morse functionsfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleCroisements de lignes de flot entre fonctions de Morse et décomposition en cône itéréfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractCe mémoire présente une nouvelle méthode d’étudier des fonctions de Morse sur une variété compacte. Plus précisément, les croisements entre les lignes de flot de pseudo-gradients associés à des fonctions de Morse permettent de définir géométriquement des morphismes entre les complexes de Morse, morphismes qui ne peuvent généralement pas être obtenus par une homotopie. Cette nouvelle classe de morphismes mène à la définition d’une catégorie triangulée. La question centrale est de savoir si tout objet de cette catégorie est décomposable en cône itéré de fonctions de Morse parfaites. En effet, une telle décomposition simplifierait l’étude de la dynamique d’une fonction de Morse en l’interprétant plutôt comme plusieurs fonctions parfaites. Une seconde question d’importance porte sur une condition de généricité globale à laquelle est soumise cette catégorie triangulée. Nous étudions la possibilité de s’en soustraire en proposant une méthode de déformations des fonctions de Morse.fr
dcterms.abstractThis master’s thesis introduces a new way to sudy Morse functions on a compact manifold. More specifically, crossings between flows of pseudo-gradients associated to Morse functions allow one to define geometric realisations of morphisms between the Morse complexes. This new class of morphisms leads to the definition of a triangulated category. The main question is to determine if every object of this category admits an iterated cone decomposition. Such a decomposition would greatly simplify the study of the dynamic of a Morse function by interpreting it as many perfect Morse functions. A second topic concerns the global genericity condition to which this category is subject. We study a way, through deformation of Morse functions, to avoid such a constraint.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record