Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/24343

Croisements de lignes de flot entre fonctions de Morse et décomposition en cône itéré

Thesis or Dissertation
Thumbnail
Fontaine_Paul_2020_memoire.pdf (1.567Mb)
2020-08 (degree granted: 2020-12-16)
Author(s)
Fontaine, Paul
Advisor(s)
Cornea, Octavian
Level
Master's
Discipline
Mathématiques
Keywords
  • Théorie de Morse
  • Homologie de Morse
  • Catégorie triangulée
  • Décomposition en cône itéré
  • Fonctions de Morse en position générique
  • Morse theory
  • Morse homology
  • Triangulated category
  • Iterated cone decomposition
  • Generic pair of Morse functions
  • Mathematics / Mathématiques (UMI : 0405)
Abstract(s)
Ce mémoire présente une nouvelle méthode d’étudier des fonctions de Morse sur une variété compacte. Plus précisément, les croisements entre les lignes de flot de pseudo-gradients associés à des fonctions de Morse permettent de définir géométriquement des morphismes entre les complexes de Morse, morphismes qui ne peuvent généralement pas être obtenus par une homotopie. Cette nouvelle classe de morphismes mène à la définition d’une catégorie triangulée. La question centrale est de savoir si tout objet de cette catégorie est décomposable en cône itéré de fonctions de Morse parfaites. En effet, une telle décomposition simplifierait l’étude de la dynamique d’une fonction de Morse en l’interprétant plutôt comme plusieurs fonctions parfaites. Une seconde question d’importance porte sur une condition de généricité globale à laquelle est soumise cette catégorie triangulée. Nous étudions la possibilité de s’en soustraire en proposant une méthode de déformations des fonctions de Morse.
 
This master’s thesis introduces a new way to sudy Morse functions on a compact manifold. More specifically, crossings between flows of pseudo-gradients associated to Morse functions allow one to define geometric realisations of morphisms between the Morse complexes. This new class of morphisms leads to the definition of a triangulated category. The main question is to determine if every object of this category admits an iterated cone decomposition. Such a decomposition would greatly simplify the study of the dynamic of a Morse function by interpreting it as many perfect Morse functions. A second topic concerns the global genericity condition to which this category is subject. We study a way, through deformation of Morse functions, to avoid such a constraint.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [17173]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [375]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS