Show item record

dc.contributor.advisorBroer, Abraham
dc.contributor.authorKratsios, Anastasis
dc.date.accessioned2015-12-18T15:43:52Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2015-12-18T15:43:52Z
dc.date.issued2015-02-18
dc.date.submitted2014-08
dc.identifier.urihttp://hdl.handle.net/1866/12814
dc.subjectRelative Homological Algebrafr
dc.subjectDimension Theoryfr
dc.subjectNoncommutative Geometryfr
dc.subjectHochschild Cohomologyfr
dc.subjectNoncommutative Algebrafr
dc.subjectAlgebraic Geometryfr
dc.subjectHomological Algebrafr
dc.subjectAlgèbre homologiquefr
dc.subjectGéométrie Algébriquefr
dc.subjectNoncommutative Differential Formsfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleBounding The Hochschild Cohomological Dimensionfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractCe mémoire a deux objectifs principaux. Premièrement de développer et interpréter les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de borner la dimension cohomologique des k-algèbres par dessous; montrant que presque aucune k-algèbre commutative est quasi-libre.fr
dcterms.abstractThe aim of this master’s thesis is two-fold. Firstly to develop and interpret the low dimensional Hochschild cohomology of a k-algebra and secondly to establish a lower bound for the Hochschild cohomological dimension of a k-algebra; showing that nearly no commutative k-algebra is quasi-free.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.