Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/8799

PROTECT_U: Un système communautaire pour la protection des usagers de Facebook

Thesis or Dissertation
Thumbnail
Gandouz_Ala_Eddine_2012_memoire.pdf (5.775Mb)
2012-08 (degree granted: 2012-11-02)
Author(s)
Gandouz, Ala Eddine
Advisor(s)
Aïmeur, Esma
Level
Master's
Discipline
Informatique
Keywords
  • Facebook
  • Vie privée
  • Profil utilisateur
  • Sites de réseaux sociaux
  • Système de recommandation
  • Filtre communautaire
  • Classification
  • Online privacy
  • User-profile
  • Social network sites
  • Recommender system
  • Community filtering
  • Classification
  • Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)
Abstract(s)
Chaque année, le nombre d’utilisateurs des réseaux sociaux augmente à une très grande vitesse. Des milliers de comptes usagés incluant des données privées sont créés quotidiennement. Un nombre incalculable de données privées et d'informations sensibles sont ainsi lues et partagées par les différents comptes. Ceci met en péril la vie privée et la sécurité de beaucoup d’utilisateurs de ces réseaux sociaux. Il est donc crucial de sensibiliser ces utilisateurs aux dangers potentiels qui les guettent. Nous présentons Protect_U (Hélou, Gandouz et al. 2012), un système de protection de la vie privée des utilisateurs de Facebook. Protect_U analyse le contenu des profils des utilisateurs et les classes selon quatre niveaux de risque : Low risk, medium risk, risky and critical. Il propose ensuite des recommandations personnalisées pour leur permettre de rendre leurs comptes plus sécuritaires. Pour ce faire, il fait appel à deux modèles de protection : local et communautaire. Le premier utilise les données personnelles de l’utilisateur afin de lui proposer des recommandations et le second recherche ses amis de confiance pour les inciter à participer à l’amélioration de la sécurité de son propre compte.
 
Social networking sites have experienced a steady and dramatic increase in the number of users over the past several years. Thousands of user accounts, each including a significant amount of private data, are created daily. As such, an almost countless amount of sensitive and private information is read and shared across the various accounts. This jeopardizes the privacy and safety of many social network users and mandates the need to increase the users’ awareness about the potential hazards they are exposed to on these sites. We introduce Protect_U (Hélou, Gandouz et al. 2012), a privacy protection system for Facebook users. Protect_U analyzes the content of user profiles and ranks them according to four risk levels: Low Risk, Medium Risk, Risky and Critical. The system then suggests personalized recommendations designed to allow users to increase the safety of their accounts. In order to achieve this, Protect_U draws upon both the local and community-based protection models. The first model uses a Facebook user’s personal data in order to suggest recommendations, and the second seeks out the user’s most trustworthy friends to encourage them to help improve the safety of his/her account.
Note(s)
Article publié dans le journal « Journal of Information Security Research ». March 2012.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [16808]
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires [724]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS