Afficher la notice

dc.contributor.advisorLanglais, Philippe
dc.contributor.authorRebout, Lise
dc.date.accessioned2012-09-24T18:57:25Z
dc.date.availableNO_RESTRICTIONen
dc.date.available2012-09-24T18:57:25Z
dc.date.issued2012-09-04
dc.date.submitted2012-06
dc.identifier.urihttp://hdl.handle.net/1866/8614
dc.subjectAlignement de phrasesen
dc.subjectRéseaux de neuronesen
dc.subjectCorpus comparablesen
dc.subjectClassifieursen
dc.subjectSystèmes de traduction statistiquesen
dc.subjectAlgorithmes d'optimisation combinatoireen
dc.subjectSentence alignmenten
dc.subjectNeural networksen
dc.subjectComparable corporaen
dc.subjectClassifiersen
dc.subjectStatistical machine translationen
dc.subjectCombinatorial optimization algorithmsen
dc.subject.otherApplied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)en
dc.titleL’extraction de phrases en relation de traduction dans Wikipédiaen
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiqueen
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sen
etd.degree.nameM. Sc. A.en
dcterms.abstractAfin d'enrichir les données de corpus bilingues parallèles, il peut être judicieux de travailler avec des corpus dits comparables. En effet dans ce type de corpus, même si les documents dans la langue cible ne sont pas l'exacte traduction de ceux dans la langue source, on peut y retrouver des mots ou des phrases en relation de traduction. L'encyclopédie libre Wikipédia constitue un corpus comparable multilingue de plusieurs millions de documents. Notre travail consiste à trouver une méthode générale et endogène permettant d'extraire un maximum de phrases parallèles. Nous travaillons avec le couple de langues français-anglais mais notre méthode, qui n'utilise aucune ressource bilingue extérieure, peut s'appliquer à tout autre couple de langues. Elle se décompose en deux étapes. La première consiste à détecter les paires d’articles qui ont le plus de chance de contenir des traductions. Nous utilisons pour cela un réseau de neurones entraîné sur un petit ensemble de données constitué d'articles alignés au niveau des phrases. La deuxième étape effectue la sélection des paires de phrases grâce à un autre réseau de neurones dont les sorties sont alors réinterprétées par un algorithme d'optimisation combinatoire et une heuristique d'extension. L'ajout des quelques 560~000 paires de phrases extraites de Wikipédia au corpus d'entraînement d'un système de traduction automatique statistique de référence permet d'améliorer la qualité des traductions produites. Nous mettons les données alignées et le corpus extrait à la disposition de la communauté scientifique.en
dcterms.abstractWorking with comparable corpora can be useful to enhance bilingual parallel corpora. In fact, in such corpora, even if the documents in the target language are not the exact translation of those in the source language, one can still find translated words or sentences. The free encyclopedia Wikipedia is a multilingual comparable corpus of several millions of documents. Our task is to find a general endogenous method for extracting a maximum of parallel sentences from this source. We are working with the English-French language pair but our method -- which uses no external bilingual resources -- can be applied to any other language pair. It can best be described in two steps. The first one consists of detecting article pairs that are most likely to contain translations. This is achieved through a neural network trained on a small data set composed of sentence aligned articles. The second step is to perform the selection of sentence pairs through another neural network whose outputs are then re-interpreted by a combinatorial optimization algorithm and an extension heuristic. The addition of the 560~000 pairs of sentences extracted from Wikipedia to the training set of a baseline statistical machine translation system improves the quality of the resulting translations. We make both the aligned data and the extracted corpus available to the scientific community.en
dcterms.languagefraen


Fichier(s) constituant ce document

Vignette

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice