Show item record

dc.contributor.advisorGranville, Andrew
dc.contributor.authorFiorilli, Daniel
dc.date.accessioned2012-07-10T16:18:57Z
dc.date.availableNO_RESTRICTIONen
dc.date.available2012-07-10T16:18:57Z
dc.date.issued2011-10-06
dc.date.submitted2011-08
dc.identifier.urihttp://hdl.handle.net/1866/8333
dc.subjectThéorie analytique des nombresen
dc.subjectNombres premiers dans les progressions arithmétiquesen
dc.subjectFonctions L de Dirichleten
dc.subjectZéros de fonctions Len
dc.subjectCourses de nombres premiersen
dc.subjectApplications du grand cribleen
dc.subjectSuites arithmétiquesen
dc.subjectAnalytic number theoryen
dc.subjectPrimes in arithmetic progressionsen
dc.subjectDirichlet L-functionsen
dc.subjectZeros of L-functionsen
dc.subjectPrime number racesen
dc.subjectApplications of large sieveen
dc.subjectArithmetic sequencesen
dc.subject.otherMathematics / Mathématiques (UMI : 0405)en
dc.titleIrrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiquesen
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesen
etd.degree.grantorUniversité de Montréal (Faculté des arts et des sciences)fr
etd.degree.levelDoctorat / Doctoralen
etd.degree.namePh. D.en
dcterms.abstractLe sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$.en
dcterms.abstractThe main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.en
dcterms.languagefraen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record