Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/7034

On some aspects of coherent risk measures and their applications

Thesis or Dissertation
Thumbnail
ASSA_HIRBOD_2011_THESE.pdf (921.3Kb)
2011-07 (degree granted: 2011-08-04)
Author(s)
Assa, Hirbod
Advisor(s)
Rémillard, Bruno
Morales, Manuel
Level
Doctoral
Discipline
Mathématiques
Keywords
  • mesures cohérentes et convexes de risque
  • propriété de Lebesgue
  • processus Càdlàg
  • allocation de capital
  • statistiques naturelles de risque
  • couverture et tarification
  • bonnes affaires
  • capital requis et solvabilité
  • Coherent and Convex Risk Measure
  • Lebesgue Property
  • Càdlàg Process
  • Capital Allocation
  • Natural Risk Statistics
  • Hedging and Pricing
  • Good Deal
  • Capital Requirement and Solvency
  • Mathematics / Mathématiques (UMI : 0405)
Abstract(s)
Le sujet principal de cette thèse porte sur les mesures de risque. L'objectif général est d'investiguer certains aspects des mesures de risque dans les applications financières. Le cadre théorique de ce travail est celui des mesures cohérentes de risque telle que définie dans Artzner et al (1999). Mais ce n'est pas la seule classe de mesure du risque que nous étudions. Par exemple, nous étudions aussi quelques aspects des "statistiques naturelles de risque" (en anglais natural risk statistics) Kou et al (2006) et des mesures convexes du risque Follmer and Schied(2002). Les contributions principales de cette thèse peuvent être regroupées selon trois axes: allocation de capital, évaluation des risques et capital requis et solvabilité. Dans le chapitre 2 nous caractérisons les mesures de risque avec la propriété de Lebesgue sur l'ensemble des processus bornés càdlàg (continu à droite, limité à gauche). Cette caractérisation nous permet de présenter deux applications dans l'évaluation des risques et l'allocation de capital. Dans le chapitre 3, nous étendons la notion de statistiques naturelles de risque à l'espace des suites infinies. Cette généralisation nous permet de construire de façon cohérente des mesures de risque pour des bases de données de n'importe quelle taille. Dans le chapitre 4, nous discutons le concept de "bonnes affaires" (en anglais Good Deals), pour notamment caractériser les situations du marché où ces positions pathologiques sont présentes. Finalement, dans le chapitre 5, nous essayons de relier les trois chapitres en étendant la définition de "bonnes affaires" dans un cadre plus large qui comprendrait les mesures de risque analysées dans les chapitres 2 et 3.
 
The aim of this thesis is to study several aspects of risk measures particularly in the context of financial applications. The primary framework that we use is that of coherent risk measures as defined in Artzner et al (1999). But this is not the only class of risk measures that we study here. We also investigate the concepts of natural risk statistics Kou et al (2006) and convex risk measure Follmer/ and Schied (2002). The main contributions of this Thesis can be classified in three main axes: Capital allocation, risk measurement and capital requirement and solvency. In chapter 2, we characterize risk measures with the Lebesgue property on bounded càdlàg processes. This allows to present two applications in risk assessment and capital allocation. In chapter 3, we extend the concept of natural risk statistics to the space of infinite sequences. This has been done in order to introduce a consistent way of constructing risk measures for data bases of any size. In chapter 4, we discuss the concept of Good Deals and how to deal with a situation where these pathological positions are present in the market. Finally, in chapter 5, we try to relate all three chapters by extending the definition of Good Deals to a larger set of risk measures that somehow includes the discussions in chapters 2 and 3.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [17175]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [375]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS