Analyse de dépendance des programmes à objet en utilisant les modèles probabilistes des entrées
Thesis or Dissertation
Abstract(s)
La tâche de maintenance ainsi que la compréhension des programmes orientés objet (OO) deviennent de plus en plus coûteuses. L’analyse des liens de dépendance peut être une solution pour faciliter ces tâches d’ingénierie. Cependant, analyser les liens de dépendance est une tâche à la fois importante et difficile. Nous proposons une approche pour l'étude des liens de dépendance internes pour des programmes OO, dans un cadre probabiliste, où les entrées du programme peuvent être modélisées comme un vecteur aléatoire, ou comme une chaîne de Markov. Dans ce cadre, les métriques de couplage deviennent des variables aléatoires dont les distributions de probabilité peuvent être étudiées en utilisant les techniques de simulation Monte-Carlo. Les distributions obtenues constituent un point d’entrée pour comprendre les liens de dépendance internes entre les éléments du programme, ainsi que leur comportement général. Ce travail est valable dans le cas où les valeurs prises par la métrique dépendent des entrées du programme et que ces entrées ne sont pas fixées à priori. Nous illustrons notre approche par deux études de cas. The task of maintenance and understanding of object-oriented programs is becoming increasingly costly. Dependency analysis can be a solution to facilitate this engineering task. However, dependency analysis is a task both important and difficult. We propose a framework for studying program internal dependencies in a probabilistic setting, where the program inputs are modeled either as a random vector, or as a Markov chain. In that setting, coupling metrics become random variables whose probability distributions can be studied via Monte-Carlo simulation. The obtained distributions provide an entry point for understanding the internal dependencies of program elements, as well as their general behaviour. This framework is appropriate for the (common) situation where the value taken by the metric does depend on the program inputs and where those inputs are not fixed a priori. We provide a concrete illustration with two case studies.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.