Show item record

dc.contributor.advisorGueheneuc, Yann-Gael
dc.contributor.authorKhomh, Foutse
dc.date.accessioned2011-06-16T14:43:59Z
dc.date.availableNO_RESTRICTIONen
dc.date.available2011-06-16T14:43:59Z
dc.date.issued2010-12-02
dc.date.submitted2010-04
dc.identifier.urihttp://hdl.handle.net/1866/4601
dc.subjectPatrons de conceptionen
dc.subjectAnti-patronsen
dc.subjectModèle de qualitéen
dc.subjectApprentissageen
dc.subjectRéseaux bayésiensen
dc.subjectDesign patternsen
dc.subjectAntipatternsen
dc.subjectQuality modelsen
dc.subjectMachine learningen
dc.subjectBayesian belief networksen
dc.subject.otherApplied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)en
dc.titlePatterns and quality of object-oriented software systemsen
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiqueen
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralen
etd.degree.namePh. D.en
dcterms.abstractLors de ces dix dernières années, le coût de la maintenance des systèmes orientés objets s'est accru jusqu' à compter pour plus de 70% du coût total des systèmes. Cette situation est due à plusieurs facteurs, parmi lesquels les plus importants sont: l'imprécision des spécifications des utilisateurs, l'environnement d'exécution changeant rapidement et la mauvaise qualité interne des systèmes. Parmi tous ces facteurs, le seul sur lequel nous ayons un réel contrôle est la qualité interne des systèmes. De nombreux modèles de qualité ont été proposés dans la littérature pour contribuer à contrôler la qualité. Cependant, la plupart de ces modèles utilisent des métriques de classes (nombre de méthodes d'une classe par exemple) ou des métriques de relations entre classes (couplage entre deux classes par exemple) pour mesurer les attributs internes des systèmes. Pourtant, la qualité des systèmes par objets ne dépend pas uniquement de la structure de leurs classes et que mesurent les métriques, mais aussi de la façon dont celles-ci sont organisées, c'est-à-dire de leur conception, qui se manifeste généralement à travers les patrons de conception et les anti-patrons. Dans cette thèse nous proposons la méthode DEQUALITE, qui permet de construire systématiquement des modèles de qualité prenant en compte non seulement les attributs internes des systèmes (grâce aux métriques), mais aussi leur conception (grâce aux patrons de conception et anti-patrons). Cette méthode utilise une approche par apprentissage basée sur les réseaux bayésiens et s'appuie sur les résultats d'une série d'expériences portant sur l'évaluation de l'impact des patrons de conception et des anti-patrons sur la qualité des systèmes. Ces expériences réalisées sur 9 grands systèmes libres orientés objet nous permettent de formuler les conclusions suivantes: • Contre l'intuition, les patrons de conception n'améliorent pas toujours la qualité des systèmes; les implantations très couplées de patrons de conception par exemple affectent la structure des classes et ont un impact négatif sur leur propension aux changements et aux fautes. • Les classes participantes dans des anti-atrons sont beaucoup plus susceptibles de changer et d'être impliquées dans des corrections de fautes que les autres classes d'un système. • Un pourcentage non négligeable de classes sont impliquées simultanément dans des patrons de conception et dans des anti-patrons. Les patrons de conception ont un effet positif en ce sens qu'ils atténuent les anti-patrons. Nous appliquons et validons notre méthode sur trois systèmes libres orientés objet afin de démontrer l'apport de la conception des systèmes dans l'évaluation de la qualité.fr
dcterms.abstractMaintenance costs during the past decades have reached more than 70% of the overall costs of object-oriented systems, because of many factors, such as changing software environments, changing users' requirements, and the overall quality of systems. One factor on which we have a control is the quality of systems. Many object-oriented software quality models have been introduced in the literature to help assess and control quality. However, these models usually use metrics of classes (such as number of methods) or of relationships between classes (for example coupling) to measure internal attributes of systems. Yet, the quality of object-oriented systems does not depend on classes' metrics solely: it also depends on the organisation of classes, i.e. the system design that concretely manifests itself through design styles, such as design patterns and antipatterns. In this dissertation, we propose the method DEQUALITE to systematically build quality models that take into account the internal attributes of the systems (through metrics) but also their design (through design patterns and antipatterns). This method uses a machine learning approach based on Bayesian Belief Networks and builds on the results of a series of experiments aimed at evaluating the impact of design patterns and antipatterns on the quality of systems. These experiments, performed on 9 large object-oriented open source systems enable us to draw the following conclusions: • Counter-intuitively, design patterns do not always improve the quality of systems; tangled implementations of design patterns for example significantly affect the structure of classes and negatively impact their change- and fault-proneness. • Classes participating in antipatterns are significantly more likely to be subject to changes and to be involved in fault-fixing changes than other classes. • A non negligible percentage of classes participate in co-occurrences of antipatterns and design patterns in systems. On these classes, design patterns have a positive effect in mitigating antipatterns. We apply and validate our method on three open-source object-oriented systems to demonstrate the contribution of the design of system in quality assessment.en
dcterms.languageengen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record