Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/4532

Éclatement et contraction lagrangiens et applications

Thesis or Dissertation
Thumbnail
Rieser_Antonio_P_2010_these.pdf (579.0Kb)
2010-08 (degree granted: 2010-12-02)
Author(s)
Rieser, Antonio P.
Advisor(s)
Cornea, Octavian
Lalonde, François
Level
Doctoral
Discipline
Mathématiques
Keywords
  • Symplectique
  • Quatre-variétés
  • Sous-variété lagrangienne
  • Packing
  • Packing relatif
  • Involution anti-symplectique
  • Variété réelle
  • Real symplectic manifolds
  • Relative packing
  • Anti-symplectic involution
  • Four-manifolds
  • Symplectic
  • Mathematics / Mathématiques (UMI : 0405)
Abstract(s)
Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement et de la contraction symplectique, que nous définissons relative à une sous-variété lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que nous éclatons une configuration suffisament symmetrique des plongements de boules, nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement ~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier le packing relatif dans (ℂP²,ℝP²).
 
Given a symplectic manifold (M,ω) and a Lagrangian submanifold L, we construct versions of the symplectic blow-up and blow-down which are defined relative to L. Furthermore, if M admits an anti-symplectic involution ϕ, i.e. a diffeomorphism such that ϕ2 = Id and ϕ*ω = —ω , and we blow-up an appropriately symmetric configuration of symplectic balls, then we show that there exists an antisymplectic involution on the blow-up ~M as well. We derive a homological condition for real Lagrangian surfaces L = Fix(ϕ) which determines when the topology of L changes after a blow down, and we then use these constructions to study the real packing numbers for real Lagrangian submanifolds in (ℂP²,ℝP²).
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [16677]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [364]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS