Éclatement et contraction lagrangiens et applications
Thesis or Dissertation
Abstract(s)
Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement
et de la contraction symplectique, que nous définissons relative à une sous-variété
lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que
nous éclatons une configuration suffisament symmetrique des plongements de boules,
nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement
~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes
réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une
courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier
le packing relatif dans (ℂP²,ℝP²). Given a symplectic manifold (M,ω) and a Lagrangian submanifold L, we construct
versions of the symplectic blow-up and blow-down which are defined relative to L. Furthermore,
if M admits an anti-symplectic involution ϕ, i.e. a diffeomorphism such that
ϕ2 = Id and ϕ*ω = —ω , and we blow-up an appropriately symmetric configuration
of symplectic balls, then we show that there exists an antisymplectic involution on the
blow-up ~M as well. We derive a homological condition for real Lagrangian surfaces
L = Fix(ϕ) which determines when the topology of L changes after a blow down, and
we then use these constructions to study the real packing numbers for real Lagrangian
submanifolds in (ℂP²,ℝP²).
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.