Abstract(s)
Ce mémoire traite d'abord du problème de la modélisation de l'interprétation des pianistes à l'aide de l'apprentissage machine. Il s'occupe ensuite de présenter de nouveaux modèles temporels qui utilisent des auto-encodeurs pour améliorer l'apprentissage de séquences.
Dans un premier temps, nous présentons le travail préalablement fait dans le domaine de la modélisation de l'expressivité musicale, notamment les modèles statistiques du professeur Widmer. Nous parlons ensuite de notre ensemble de données, unique au monde, qu'il a été nécessaire de créer pour accomplir notre tâche. Cet ensemble est composé de 13 pianistes différents enregistrés sur le fameux piano Bösendorfer 290SE. Enfin, nous expliquons en détail les résultats de l'apprentissage de réseaux de neurones et de réseaux de neurones récurrents. Ceux-ci sont appliqués sur les données mentionnées pour apprendre les variations expressives propres à un style de musique.
Dans un deuxième temps, ce mémoire aborde la découverte de modèles statistiques expérimentaux qui impliquent l'utilisation d'auto-encodeurs sur des réseaux de neurones récurrents. Pour pouvoir tester la limite de leur capacité d'apprentissage, nous utilisons deux ensembles de données artificielles développées à l'Université de Toronto.
This thesis addresses the problem of modeling pianists' interpretations using machine learning, and presents new models that use temporal auto-encoders to improve their learning for sequences.
We present previous work in the field of modeling musical expression, including Professor Widmer's statistical models. We then discuss our unique dataset created specifically for our task. This dataset is composed of 13 different pianists recorded on the famous Bösendorfer 290SE piano. Finally, we present the learning results of neural networks and recurrent neural networks in detail. These algorithms are applied to the dataset to learn expressive variations specific to a style of music.
We also present novel statistical models involving the use of auto-encoders in recurrent neural networks. To test the limits of these algorithms' ability to learn, we use two artificial datasets developed at the University of Toronto.