Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • FAS - Département d'informatique et de recherche opérationnelle
  • FAS - Département d'informatique et de recherche opérationnelle - Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • FAS - Département d'informatique et de recherche opérationnelle
  • FAS - Département d'informatique et de recherche opérationnelle - Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/4426

Modélisation de l'interprétation des pianistes & applications d'auto-encodeurs sur des modèles temporels

Thesis or Dissertation
Thumbnail
Lauly_Stanislas_2010_memoire.pdf (4.678Mb)
Lauly_Stanislas_2010_videoHuman.mov (13.88Mb)
Lauly_Stanislas_2010_videoMidi.mov (14.88Mb)
Lauly_Stanislas_2010_videoModel.mov (15.17Mb)
2010-04 (degree granted: 2010-10-07)
Author(s)
Lauly, Stanislas
Advisor(s)
Eck, Douglas
Vincent, Pascal
Level
Master's
Discipline
Informatique
Keywords
  • Apprentissage machine
  • Performance expressive
  • Réseau de neurones récurrent
  • Musique
  • Auto-encodeur
  • Modèle temporel
  • Machine learning
  • Expressive timing
  • Expressive performance
  • Recurrent neural networks
  • Music
  • Auto-encoders
  • Temporal models
  • Applied Sciences - Artificial Intelligence / Sciences appliqués et technologie - Intelligence artificielle (UMI : 0800)
Abstract(s)
Ce mémoire traite d'abord du problème de la modélisation de l'interprétation des pianistes à l'aide de l'apprentissage machine. Il s'occupe ensuite de présenter de nouveaux modèles temporels qui utilisent des auto-encodeurs pour améliorer l'apprentissage de séquences. Dans un premier temps, nous présentons le travail préalablement fait dans le domaine de la modélisation de l'expressivité musicale, notamment les modèles statistiques du professeur Widmer. Nous parlons ensuite de notre ensemble de données, unique au monde, qu'il a été nécessaire de créer pour accomplir notre tâche. Cet ensemble est composé de 13 pianistes différents enregistrés sur le fameux piano Bösendorfer 290SE. Enfin, nous expliquons en détail les résultats de l'apprentissage de réseaux de neurones et de réseaux de neurones récurrents. Ceux-ci sont appliqués sur les données mentionnées pour apprendre les variations expressives propres à un style de musique. Dans un deuxième temps, ce mémoire aborde la découverte de modèles statistiques expérimentaux qui impliquent l'utilisation d'auto-encodeurs sur des réseaux de neurones récurrents. Pour pouvoir tester la limite de leur capacité d'apprentissage, nous utilisons deux ensembles de données artificielles développées à l'Université de Toronto.
 
This thesis addresses the problem of modeling pianists' interpretations using machine learning, and presents new models that use temporal auto-encoders to improve their learning for sequences. We present previous work in the field of modeling musical expression, including Professor Widmer's statistical models. We then discuss our unique dataset created specifically for our task. This dataset is composed of 13 different pianists recorded on the famous Bösendorfer 290SE piano. Finally, we present the learning results of neural networks and recurrent neural networks in detail. These algorithms are applied to the dataset to learn expressive variations specific to a style of music. We also present novel statistical models involving the use of auto-encoders in recurrent neural networks. To test the limits of these algorithms' ability to learn, we use two artificial datasets developed at the University of Toronto.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [15031]
  • FAS - Département d'informatique et de recherche opérationnelle - Thèses et mémoires [629]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS