Show item record

dc.contributor.advisorPal, Christopher
dc.contributor.authorBelanger Albarran, Georges
dc.date.accessioned2024-07-15T14:55:16Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2024-07-15T14:55:16Z
dc.date.issued2024-06-19
dc.date.submitted2024-04
dc.identifier.urihttp://hdl.handle.net/1866/33568
dc.subjectRésumé de Dialoguefr
dc.subjectGrands Modèles de Langage,fr
dc.subjectHallucinationfr
dc.subjectFactualitéfr
dc.subjectCouverturefr
dc.subjectCitation de Contenufr
dc.subjectDialogue Summarizationfr
dc.subjectLarge Language Modelsfr
dc.subjectFactualityfr
dc.subjectCoveragefr
dc.subjectContent Citationfr
dc.subject.otherArtificial intelligence / Intelligence artificielle (UMI : 0800)fr
dc.titleEnhancing factuality and coverage in summarization via referencing key extracted contentfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractLes résumés abstraits de dialogues permettent aux gens de comprendre rapidement les aspects clés des conversations dont la synthèse nécessiterait autrement des efforts considérables. Malgré les progrès considérables réalisés par les grands modèles de langage (LLM), même les modèles les plus puissants souffrent encore d’hallucinations lorsqu’ils génèrent des résumés abstraits et ne parviennent pas à couvrir des aspects importants du contenu sous-jacent. En outre, la vérification humaine de la factualité d’un résumé abstrait peut nécessiter un effort considérable. L’un des moyens de minimiser la charge cognitive liée à la vérification de la qualité d’un résumé consiste à faire en sorte que le résumé cite des phrases dans le contenu original. Cependant, il est rare que les ensembles de données de résumés abstraits citent des passages de texte du contenu original. Même les meilleurs LLM ont du mal à effectuer un résumé basé sur des citations. Pour résoudre ce problème, nous créons l’ensemble de données Tweetsumm++, composé de résumés abstraits soutenus par des citations de dialogues entre clients et entreprises sur Twitter. Nous examinons également une méthode d’entraînement et de formulation de problèmes multitâches qui apprend à effectuer conjointement un résumé extractif et un résumé abstractif faisant référence au contenu extrait. Dans notre configuration, le modèle est également chargé d’étiqueter les phrases clés dans des catégories telles que ISSUE, RESOLUTION,WORKAROUND et autres, qui représentent les principaux éléments clés d’un dialogue. Nous explorons l’impact de la mise au point d’un LLM Mixtral open-source pour effectuer un résumé abstractif basé sur des citations et une catégorisation des phrases clés. En outre, étant donné que l’acquisition d’étiquettes pour un tel ensemble de données est coûteuse, nous explorons une nouvelle méthode d’auto-étiquetage basée sur le feedback de l’IA qui bénéficie du format de résumé basé sur les citations et peut améliorer les modèles en ce qui concerne la qualité des citations.fr
dcterms.abstractAbstractive summaries of dialogues allow people to quickly understand key aspects of conversations that might otherwise take considerable effort to synthesize. Despite the tremendous progress made by large language models (LLMs), even the most powerful models still suffer from hallucinations when generating abstractive summaries and fail to cover important aspects of the underlying content. Furthermore, human verification of the factuality of an abstractive summary can entail significant effort. One way to minimize the cognitive load of quality checking an abstractive summary is to have the summary cite sentences within the original content. However, it is uncommon for abstractive summarization datasets to cite passages of text from the original content. Even the best LLMs struggle to perform citation-backed summarization. To address this issue, we create the Tweetsumm++ dataset composed of citation-backed abstractive summaries of dialogues between customers and companies on Twitter. We also examine a multi-task problem formulation and training method that learns to jointly perform extractive, and abstractive summarization which reference the extracted content. In our setup, the model is also tasked with tagging key sentences into categories such as ISSUE, RESOLUTION, WORKAROUND, and others that represent the main key elements of a dialogue. We explore the impact of fine-tuning an open-source Mixtral LLM to perform citation-backed abstractive summarization and key sentence categorization. Further, since acquiring labels for such a dataset is costly, we explore a novel self-labeling method based on AI feedback that benefits from the citation-based summarization format and can improve models with respect to citation quality.fr
dcterms.languageengfr
dcterms.relationhttps://huggingface.co/datasets/gebelangsn/tweetsumpp/fr


Files in this item

PDF

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.