Afficher la notice

dc.contributor.authorHerlin, Antoine
dc.contributor.authorJacquemet, Vincent
dc.date.accessioned2024-04-15T11:57:13Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2024-04-15T11:57:13Z
dc.date.issued2011-12-22
dc.identifier.urihttp://hdl.handle.net/1866/32910
dc.publisherAmerican Institute of Physicsfr
dc.subjectGeographic information systemsfr
dc.subjectReaction-diffusion systemfr
dc.subjectOperator theoryfr
dc.subjectReentrantfr
dc.subjectScalar field theoryfr
dc.subjectDiseases and conditionsfr
dc.subjectAction potentialfr
dc.subjectMembrane potentialfr
dc.subjectMusculoskeletal systemfr
dc.subjectCovariance and correlationfr
dc.titleEikonal-based initiation of fibrillatory activity in thin-walled cardiac propagation modelsfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté de médecine. Département de pharmacologie et physiologiefr
dc.identifier.doi10.1063/1.3670060
dcterms.abstractReentrant arrhythmias can be simulated in electrophysiological models of electrical impulse propagation governed by a reaction-diffusion system. To facilitate the initiation of a large number of independent episodes of simulated arrhythmias with controllable level of complexity, a new approach is proposed for thin-walled geometries in which depolarization wave dynamics is essentially two-dimensional. Points representing phase singularities are first randomly distributed over the epicardial surface and are assigned a topological charge (direction of rotation). A qualitatively-correct phase map is then reconstructed on the whole surface by interpolation. The eikonal-diffusion equation is used to iteratively regularize the phase map based on a priori information on wavefront propagation. An initial condition for the reaction-diffusion model is created from the resulting phase map with multiple functional/anatomical reentries. Results in an atrial model demonstrate the ability to generate statistical realizations of the same dynamics and to vary the level of complexity measured by the number of phase singularities. A library of 100 simulations with an average number of phase singularities ranging from 1 to 10 is created. An extension to volumetric patient-specific atrial models including fiber orientation and a fast conducting system is presented to illustrate possible applications.fr
dcterms.isPartOfurn:ISSN:1054-1500fr
dcterms.isPartOfurn:ISSN:1089-7682fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposanthttps://doi.org/10.1063/1.3670060fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleChaosfr
oaire.citationVolume21fr
oaire.citationIssue4fr


Fichier·s constituant ce document

Vignette

Ce document figure dans la ou les collections suivantes

Afficher la notice

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.