Show item record

dc.contributor.advisorRish, Irina
dc.contributor.authorRaparthy, Sharath Chandra
dc.date.accessioned2023-11-23T18:53:28Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2023-11-23T18:53:28Z
dc.date.issued2023-05-29
dc.date.submitted2023-02
dc.identifier.urihttp://hdl.handle.net/1866/32088
dc.subjectReinforcement Learningfr
dc.subjectContinual Learningfr
dc.subjectMixing Timesfr
dc.subjectApprentissage par Renforcementfr
dc.subjectApprentissage Continuelfr
dc.subjectTemps de Mélangefr
dc.subject.otherArtificial intelligence / Intelligence artificielle (UMI : 0800)fr
dc.titleOn impact of mixing times in continual reinforcement learningfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractLe temps de mélange de la chaîne de Markov induite par une politique limite ses performances dans les scénarios réels d'apprentissage continu. Pourtant, l'effet des temps de mélange sur l'apprentissage dans l'apprentissage par renforcement (RL) continu reste peu exploré. Dans cet article, nous caractérisons des problèmes qui sont d'un intérêt à long terme pour le développement de l'apprentissage continu, que nous appelons processus de décision markoviens (MDP) « extensibles » (scalable), à travers le prisme des temps de mélange. En particulier, nous établissons théoriquement que les MDP extensibles ont des temps de mélange qui varient de façon polynomiale avec la taille du problème. Nous démontrons ensuite que les temps de mélange polynomiaux présentent des difficultés importantes pour les approches existantes, qui souffrent d'un biais myope et d'estimations à base de ré-échantillonnage avec remise ensembliste (bootstrapping) périmées. Pour valider notre théorie, nous étudions la complexité des temps de mélange en fonction du nombre de tâches et de la durée des tâches pour des politiques très performantes déployées sur plusieurs jeux Atari. Notre analyse démontre à la fois que des temps de mélange polynomiaux apparaissent en pratique et que leur existence peut conduire à un comportement d'apprentissage instable, comme l'oubli catastrophique dans des contextes d'apprentissage continu.fr
dcterms.abstractThe mixing time of the Markov chain induced by a policy limits performance in real-world continual learning scenarios. Yet, the effect of mixing times on learning in continual reinforcement learning (RL) remains underexplored. In this paper, we characterize problems that are of long-term interest to the development of continual RL, which we call scalable MDPs, through the lens of mixing times. In particular, we theoretically establish that scalable MDPs have mixing times that scale polynomially with the size of the problem. We go on to demonstrate that polynomial mixing times present significant difficulties for existing approaches, which suffer from myopic bias and stale bootstrapped estimates. To validate our theory, we study the empirical scaling behavior of mixing times with respect to the number of tasks and task duration for high performing policies deployed across multiple Atari games. Our analysis demonstrates both that polynomial mixing times do emerge in practice and how their existence may lead to unstable learning behavior like catastrophic forgetting in continual learning settings.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.