Show item record

dc.contributor.authorMoeini, Mohammadreza
dc.contributor.authorYue, Lingyu
dc.contributor.authorBegon, Mickaël
dc.contributor.authorLévesque, Martin
dc.date.accessioned2023-07-05T12:30:10Z
dc.date.availableMONTHS_WITHHELD:12fr
dc.date.available2023-07-05T12:30:10Z
dc.date.issued2022-11-30
dc.identifier.urihttp://hdl.handle.net/1866/28341
dc.publisherElsevierfr
dc.rightsAttribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
dc.subjectFoot orthoticsfr
dc.subjectFlat footfr
dc.subjectFinite element methodfr
dc.subjectDerivative-free optimizationfr
dc.subjectHomogenizationfr
dc.subjectSurrogatefr
dc.titleSurrogate optimization of a lattice foot orthoticfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté de médecine. École de kinésiologie et des sciences de l'activité physiquefr
dc.contributor.affiliationÉcole polytechnique (Montréal, Québec).‏ Laboratoire de mécanique multi-échelles (LM2)fr
dc.contributor.affiliationUniversité de Montréal. Laboratoire de simulation et modélisation du mouvementfr
dc.contributor.affiliationHôpital Sainte-Justine.‏ ‎Centre de recherchefr
dc.identifier.doi10.1016/j.compbiomed.2022.106376
dcterms.abstractBackground: Additive manufacturing enables to print patient-specific Foot Orthotics (FOs). In FOs featuring lattice structures, the variation of the cell’s dimensions provides a locally variable stiffness to meet the therapeutic needs of each patient. In an optimization problem, however, using explicit Finite Element (FE) simulation of lattice FOs with converged 3D elements is computationally prohibitive. This paper presents a framework to efficiently optimize the cell’s dimensions of a honeycomb lattice FO for flat foot condition. Methods: We built a surrogate based on shell elements whose mechanical properties were computed by the numerical homogenization technique. The model was submitted to a static pressure distribution of a flat foot and it predicted the displacement field for a given set of geometrical parameters of the honeycomb FO. This FE simulation was considered as a black-box and a derivative-free optimization solver was employed. The cost function was defined based on the difference between the predicted displacement by the model against a therapeutic target displacement. Results: Using the homogenized model as a surrogate significantly accelerated the stiffness optimization of the lattice FO. The homogenized model could predict the displacement field 78 times faster than the explicit model. When 2000 evaluations were required in an optimization problem, the computational time was reduced from 34 days to 10 hours using the homogenized model rather than explicit model. Moreover, in the homogenized model, there was no need to re-create and re-mesh the insole’s geometry in each iteration of the optimization. It was only required to update the effective properties. Conclusion: The presented homogenized model can be used as a surrogate within an optimization framework to customize cell’s dimensions of honeycomb lattice FO in a computationally efficient manner.fr
dcterms.isPartOfurn:ISSN:0010-4825fr
dcterms.isPartOfurn:ISSN:1879-0534fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposantMoeini M, Yue L, Begon M, Lévesque M. Surrogate optimization of a lattice foot orthotic. Comput Biol Med. 2023 Mar;155:106376. doi: 10.1016/j.compbiomed.2022.106376.fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleComputers in biology and medicinefr
oaire.citationVolume155fr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International (CC BY-NC-ND 4.0)
Usage rights : Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International (CC BY-NC-ND 4.0)