Show item record

dc.contributor.authorTous, Cyril
dc.contributor.authorLi, Ning
dc.contributor.authorDimov, Ivan P.
dc.contributor.authorKadoury, Samuel
dc.contributor.authorTang, An
dc.contributor.authorHäfeli, Urs O.
dc.contributor.authorNosrati, Zeynab
dc.contributor.authorSaatchi, Katayoun
dc.contributor.authorMoran, Gerald
dc.contributor.authorCouch, Marcus J.
dc.contributor.authorMartel, Sylvain
dc.contributor.authorLessard, Simon
dc.contributor.authorSoulez, Gilles
dc.date.accessioned2023-06-20T17:45:17Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2023-06-20T17:45:17Z
dc.date.issued2021-10-07
dc.identifier.urihttp://hdl.handle.net/1866/28273
dc.publisherSpringerfr
dc.subjectMRI duty cyclefr
dc.subjectBifurcation phantomfr
dc.subjectMagnetic drug-eluting beadsfr
dc.subjectMicrorobotsfr
dc.subjectSteering aggregatefr
dc.titleNavigation of microrobots by MRI : impact of gravitational, friction and thrust forces on steering successfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté de médecine. Département de radiologie, radio-oncologie et médecine nucléairefr
dc.identifier.doi10.1007/s10439-021-02865-1
dcterms.abstractIntroduction Magnetic resonance navigation (MRN) uses MRI gradients to steer magnetic drug-eluting beads (MDEBs) across vascular bifurcations. We aim to experimentally verify our theoretical forces balance model (gravitational, thrust, friction, buoyant and gradient steering forces) to improve the MRN targeted success rate. Method A single-bifurcation phantom (3 mm inner diameter) made of poly-vinyl alcohol was connected to a cardiac pump at 0.8 mL/s, 60 beats/minutes with a glycerol solution to reproduce the viscosity of blood. MDEB aggregates (25 ± 6 particles, 200 μm ) were released into the main branch through a 5F catheter. The phantom was tilted horizontally from − 10° to +25° to evaluate the MRN performance. Results The gravitational force was equivalent to 71.85 mT/m in a 3T MRI. The gradient duration and amplitude had a power relationship (amplitude=78.717 (duration)−0.525 ). It was possible, in 15° elevated vascular branches, to steer 87% of injected aggregates if two MRI gradients are simultaneously activated (Gx = +26.5 mT/m, Gy = +18 mT/m for 57% duty cycle), the flow velocity was minimized to 8 cm/s and a residual pulsatile flow to minimize the force of friction. Conclusion Our experimental model can determine the maximum elevation angle MRN can perform in a single-bifurcation phantom simulating in vivo conditions.fr
dcterms.isPartOfurn:ISSN:0090-6964fr
dcterms.isPartOfurn:ISSN:1573-9686fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposantTous, C., Li, N., Dimov, I. P., Kadoury, S., Tang, A., Häfeli, U. O., Nosrati, Z., Saatchi, K., Moran, G., Couch, M. J., Martel, S., Lessard, S., & Soulez, G. (2021). Navigation of Microrobots by MRI: Impact of Gravitational, Friction and Thrust Forces on Steering Success. Annals of biomedical engineering, 49(12), 3724–3736. https://doi.org/10.1007/s10439-021-02865-1fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleAnnals of biomedical engineeringfr
oaire.citationVolume49fr
oaire.citationIssue12fr
oaire.citationStartPage3724fr
oaire.citationEndPage3736fr


Files in this item

Microsoft Word

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.