Show item record

dc.contributor.authorVenne, André
dc.contributor.authorBailly, François
dc.contributor.authorCharbonneau, Eve
dc.contributor.authorDowling-Medley, Jennifer
dc.contributor.authorBegon, Mickaël
dc.date.accessioned2022-05-16T12:02:04Z
dc.date.availableMONTHS_WITHHELD:12fr
dc.date.available2022-05-16T12:02:04Z
dc.date.issued2022-06-01
dc.identifier.urihttp://hdl.handle.net/1866/26647
dc.publisherRoutledgefr
dc.rightsCe document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d’utilisation commerciale 4.0 International. / This work is licensed under a Creative Commons Attribution - NonCommercial 4.0 International License.
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/deed.fr
dc.subjectDynamic optimizationfr
dc.subjectOptimal controlfr
dc.subjectInverse dynamicsfr
dc.subjectAerial acrobaticsfr
dc.subjectInitial conditionsfr
dc.titleOptimal estimation of complex aerial movements using dynamic optimizationfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté de médecine. Département de pharmacologie et physiologiefr
dcterms.abstractWhen estimating full-body motion from experimental data, inverse kinematics followed by inverse dynamics does not guarantee dynamical consistency of the resulting motion, especially in movements where the trajectory depends heavily on the initial state, such as in free-fall. Our objective was to estimate dynamically consistent joint kinematics and kinetics of complex aerial movements. A 42-degrees-of-freedom model with 95 markers was personalized for five elite trampoline athletes performing various backward and forward twisting somersaults. Using dynamic optimization, our algorithm estimated joint angles, velocities and torques by tracking the recorded marker positions. Kinematics, kinetics, angular and linear momenta, and marker tracking difference were compared to results of an Extended Kalman Filter (EKF) followed by inverse dynamics. Angular momentum and horizontal linear momentum were conserved throughout the estimated motion, as per free-fall dynamics. Marker tracking difference went from 17±4 mm for the EKF to 36±11 mm with dynamic optimization tracking the experimental markers, and to 49±9 mm with tracking of EKF joint angles. Joint angles from the dynamic optimizations were similar to those of the EKF, and joint torques were smoother. This approach satisfies the dynamics of complex aerial rigid-body movements while remaining close to the experimental 3D marker dataset.fr
dcterms.descriptionUn exemple du code utilisé est disponible sur le Github du groupe Simulation et Modélisation du Mouvement (s2mLab). https://github.com/s2mLab/AerialAcrobaticsOptimalTrackingfr
dcterms.isPartOfurn:ISSN:1476-3141fr
dcterms.isPartOfurn:ISSN:1752-6116fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposantOptimal estimation of complex aerial movements using dynamic optimisation DOI:10.1080/14763141.2022.2066015 Le DOI n'est pas encore actif, en attente de proofreadingfr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleSports biomechanicsfr


Files in this item

Microsoft Word
Microsoft Word
Video

This item appears in the following Collection(s)

Show item record

Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d’utilisation commerciale 4.0 International. / This work is licensed under a Creative Commons Attribution - NonCommercial 4.0 International License.
Usage rights : Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d’utilisation commerciale 4.0 International. / This work is licensed under a Creative Commons Attribution - NonCommercial 4.0 International License.