Show item record

dc.contributor.advisorNowrouzezahrai, Derek
dc.contributor.authorDubouchet, Renaud Adrien
dc.date.accessioned2022-02-15T13:08:42Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2022-02-15T13:08:42Z
dc.date.issued2021-11-17
dc.date.submitted2021-04
dc.identifier.urihttp://hdl.handle.net/1866/26273
dc.subjectRenderingfr
dc.subjectLight Transportfr
dc.subjectFrequency Analysisfr
dc.subjectParticipating Mediafr
dc.subjectAdaptive Samplingfr
dc.subjectFilteringfr
dc.subjectSpherical Harmonicsfr
dc.subjectRendu réalistefr
dc.subjectTransport de la lumièrefr
dc.subjectAnalyse fréquentiellefr
dc.subjectMédia participatifsfr
dc.subjectÉchantillonage adaptatiffr
dc.subjectFiltragefr
dc.subjectHarmoniques sphériquesfr
dc.subject.otherApplied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)fr
dc.titleEfficient frequency-space methods for light transport cachingfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractLe transport de la lumière permet de simuler physiquement le movement de photons dans un environnement virtuel. En rendu d’images, la lumière se propage une dernière fois vers un capteur virtuel la transformant en une image, affichée pour un observateur. Durant ce voyage la lumière peut être analysée fréquentiellement pour comprendre ses variations spatiales et angulaires afin d’accélerer le rendu. La génération d’images réalistes a subit de grandes avancées au cours des dernières années, réduisant l’écart entre simulation et réalité. Cependant les contraintes en terme de performance et de mémoire empêchent toujours aux applications interactives et en temps-réel de bénéficier des effets de rendu les plus complexes. Pour cela, les moteurs de rendu professionels modernes dépendent toujours de méthodes de pré-calculation de données et de procédures asynchrones de traitement. Cette thèse par article présente deux projets traitant du transport de la lumière à travers une perspective fréquentielle dans le contexte d’applications interactives et en temps-réel. Nous proposons premièrement une méthode pour réutiliser efficacement le calcul préalable de chemins de lumière par méthode Monte Carlo pour des séquences animées. Nous prenons avantage de l’analyse fréquentielle du transport de la lumière réalisée dans des travaux antérieurs, étendue ici à l’échantillonement et reconstruction spatial, angulaire et temporel. Notre seconde méthode pré-calcule le transport de la lumière à travers les volumes participatifs jusqu’aux surfaces, que nous encodons comme réponse impulsive. Cet opérateur compacte et efficace nous permet d’accélerer le transport à travers des volumes jusqu’aux surfaces dans le contexte de diffusion multiple dans des conditions arbitraires de média participatifs.fr
dcterms.abstractLight transport is the method of physically simulating the movement of photons in an environment. Applied to rendering, light travels one last time to a virtual sensor that captures it as an image displayed to an observer. As it travels, light is analysable frequentially to understand how it varies spatially and angularly to accelerate rendering. Recent advances in physically-based realistic rendering have been closing the gap between reality and simulation but the memory and performance costs still preclude the inclusion of the more computationally expensive effects in interactive and real-time applications. Because of this, modern production renderers rely on the ahead-of-time precomputation of data for efficient reuse in the form of offline computational processes and asynchronously distributed procedures. This thesis by publication investigates with two papers the simulation of light transport from a frequency-based perspective for interactive and precomputed real-time applications. We first propose a method for efficiently reusing light path computations over time in interactive Monte Carlo path-traced animation sequences. We leverage to this end the frequency analysis of light transport introduced in previous works, extended to spatial, angular and temporal sampling and reconstruction. Our second method investigates the precomputation of participating volume-to-surface light transport as impulse responses, a compact and efficient frequency-based transport operator. In turn, these operators accelerate by orders of magnitude the computation of multi-scattered volume-to-surface transport in arbitrary, potentially heterogeneous media conditions.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.