Show item record

dc.contributor.advisorTapp, Alain
dc.contributor.authorBrouillard, Philippe
dc.date.accessioned2021-05-31T18:08:26Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2021-05-31T18:08:26Z
dc.date.issued2021-03-24
dc.date.submitted2020-07
dc.identifier.urihttp://hdl.handle.net/1866/25096
dc.subjectapprentissage structuré causalfr
dc.subjectinférence causalefr
dc.subjectmodèles causauxfr
dc.subjectapprentissage automatiquefr
dc.subjectréseaux neuronauxfr
dc.subjectapprentissage profondfr
dc.subjectcausal structure learningfr
dc.subjectcausal inferencefr
dc.subjectcausal modelfr
dc.subjectmachine learningfr
dc.subjectneural networkfr
dc.subjectdeep learningfr
dc.subject.otherApplied Sciences - Artificial Intelligence / Sciences appliqués et technologie - Intelligence artificielle (UMI : 0800)fr
dc.titleApprentissage de modèles causaux par réseaux de neurones artificielsfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractDans ce mémoire par articles, nous nous intéressons à l’apprentissage de modèles causaux à partir de données. L’intérêt de cette entreprise est d’obtenir une meilleure compréhension des données et de pouvoir prédire l’effet qu’aura un changement sur certaines variables d’un système étudié. Comme la découverte de liens causaux est fondamentale en sciences, les méthodes permettant l’apprentissage de modèles causaux peuvent avoir des applications dans une pléthore de domaines scientifiques, dont la génomique, la biologie et l’économie. Nous présentons deux nouvelles méthodes qui ont la particularité d’être des méthodes non-linéaires d’apprentissage de modèles causaux qui sont posées sous forme d’un problème d’optimisation continue sous contrainte. Auparavant, les méthodes d’apprentissage de mo- dèles causaux abordaient le problème de recherche de graphes en utilisant des stratégies de recherche voraces. Récemment, l’introduction d’une contrainte d’acyclicité a permis d’abor- der le problème différemment. Dans un premier article, nous présentons une de ces méthodes: GraN-DAG. Sous cer- taines hypothèses, GraN-DAG permet d’apprendre des graphes causaux à partir de données observationnelles. Depuis la publication du premier article, plusieurs méthodes alternatives ont été proposées par la communauté pour apprendre des graphes causaux en posant aussi le problème sous forme d’optimisation continue avec contrainte. Cependant, aucune de ces méthodes ne supportent les données interventionnelles. Pourtant, les interventions réduisent le problème d’identifiabilité et permettent donc l’utilisation d’architectures neuronales plus expressives. Dans le second article, nous présentons une autre méthode, DCDI, qui a la particularité de pouvoir utiliser des données avec différents types d’interventions. Comme le problème d’identifiabilité est moins important, une des deux instanciations de DCDI est un approximateur de densité universel. Pour les deux méthodes proposées, nous montrons que ces méthodes ont de très bonnes performances sur des données synthétiques et réelles comparativement aux méthodes traditionelles.fr
dcterms.abstractIn this thesis by articles, we study the learning of causal models from data. The goal of this entreprise is to gain a better understanding of data and to be able to predict the effect of a change on some variables of a given system. Since discovering causal relationships is fundamental in science, causal structure learning methods have applications in many fields that range from genomics, biology, and economy. We present two new methods that have the particularity of being non-linear methods learning causal models casted as a continuous optimization problem subject to a constraint. Previously, causal strutural methods addressed this search problem by using greedy search heuristics. Recently, a new continuous acyclity constraint has allowed to address the problem differently. In the first article, we present one of these non-linear method: GraN-DAG. Under some assumptions, GraN-DAG can learn a causal graph from observational data. Since the publi- cation of this first article, several alternatives methods have been proposed by the community by using the same continuous-constrained optimization formulation. However, none of these methods support interventional data. Nevertheless, interventions reduce the identifiability problem and allow the use of more expressive neural architectures. In the second article, we present another method, DCDI, that has the particularity to leverage data with several kinds of interventions. Since the identifiabiliy issue is less severe, one of the two instantia- tions of DCDI is a universal density approximator. For both methods, we show that these methods have really good performances on synthetic and real-world tasks comparatively to other classical methods.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.