Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/24349

La structure des représentations des algèbres de Temperley-Lieb affines sur la chaîne de spins XXZ

Thesis or Dissertation
Thumbnail
Pinet_Theo_2020_memoire.pdf (1.767Mb)
2020-08 (degree granted: 2020-12-16)
Author(s)
Pinet, Théo
Advisor(s)
Saint-Aubin, Yvan
Level
Master's
Discipline
Mathématiques
Keywords
  • Théorie de la représentation
  • Algèbres de Temperley-Lieb affines
  • Modules cellulaires
  • Chaînes XXZ périodiques
  • Groupes quantiques
  • Extension de Lusztig
  • Dualité de Schur-Weyl
  • Couvertures projectives
  • Décomposition de Clebsch-Gordan généralisée
  • Representation theory
  • Affine Temperley-Lieb algebras
  • Cellular modules
  • Periodic XXZ chains
  • Quantum groups
  • Lusztig’s extension LUqsl2
  • Quantum Schur-Weyl duality
  • Projective covers
  • Generalized Clebsch-Gordan decomposition
  • Mathematics / Mathématiques (UMI : 0405)
Abstract(s)
Ce mémoire révèle la structure des représentations des algèbres de Temperley-Lieb affines aTLN(β) sur les espaces propres CN(q,v,d) (du spin total Sz) des chaînes de spins XXZ périodiques. En particulier, on y démontre que ces représentations, introduites dans Martin/Saleur et Morin-Duchesne/Saint-Aubin, admettent toujours une structure similaire à celle des représentations de Feigin-Fuchs de l’algèbre de Virasoro Vir et que les différentes possibilités, pour la structure d’un Vir-module de Feigin-Fuchs, sont toutes réalisées par un espace propre donné. On introduit aussi une pléthore d’applications aTLN(β)-linéaires entre différents espaces propres en considérant une action naturelle de l’extension de Lusztig LUqsl2 sur les chaînes XXZ périodiques et on caractérise entièrement le noyau ainsi que l’image de ces applications à l’aide de longues suites exactes et d’une décomposition de Clebsch-Gordan généralisée. Finalement, on identifie l’image du morphisme iNd(q,v) défini par Morin-Duchesne/Saint-Aubin et on donne également une nouvelle réalisation explicite pour les couvertures projectives de la catégorie modLUqsl2.
 
This master’s thesis reveals the structure of the representations of the affine Temperley-Lieb algebras aTLN(β) on the eigenspaces CN(q,v,d) (of the total spin Sz) of the periodic XXZ spin chains. In particular, we show that these representations, introduced by Martin/Saleur and Morin-Duchesne/Saint-Aubin, always admit a structure akin that of the Feigin-Fuchs representations of the Virasoro Vir algebra and that the different possibilities, for the structure of a Feigin-Fuchs Vir-module, are all realized by a given eigenspace. We also give a plethora of aTLN(β)-linear maps between different eigenspaces by considering a natural action of the Lusztig extension LUqsl2 on the periodic XXZ chains and we then fully characterize the kernel and image of these morphisms by means of long exact sequences and a generalized Clebsch-Gordan decomposition. Finally, we explicitly give the image of the intertwiner iNd(q,v) defined by Morin-Duchesne/Saint-Aubin and we also introduce a new explicit realization for the projective covers in the category modLUqsl2.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [17173]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [375]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS