Show item record

dc.contributor.authorKhazoom, François
dc.contributor.authorL'Écuyer, Sydnée
dc.contributor.authorGilbert, Kim
dc.contributor.authorGagné, Marc-André
dc.contributor.authorBouchard, Caroline
dc.contributor.authorRose, Christopher
dc.contributor.authorRousseau, Guy
dc.contributor.authorCharbonney, Emmanuel
dc.date.accessioned2020-11-30T13:56:29Z
dc.date.availableMONTHS_WITHHELD:12fr
dc.date.available2020-11-30T13:56:29Z
dc.date.issued2020-07-06
dc.identifier.urihttp://hdl.handle.net/1866/24065
dc.publisherLippincott, Williams & Wilkinsfr
dc.subjectHemorrhagic shockfr
dc.subjectOrgan failurefr
dc.subjectDanger-associated molecular patternsfr
dc.subjectUric acidfr
dc.titleImpact of uric acid on liver injury and intestinal permeability following resuscitated hemorrhagic shock in ratsfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté de médecine. Département de médecinefr
dc.identifier.doi10.1097/TA.0000000000002868
dcterms.abstractBACKGROUND Multiorgan failure is a consequence of severe ischemia-reperfusion injury after traumatic hemorrhagic shock (HS), a major cause of mortality in trauma patients. Circulating uric acid (UA), released from cell lysis, is known to activate proinflammatory and proapoptotic pathways and has been associated with poor clinical outcomes among critically ill patients. Our group has recently shown a mediator role for UA in kidney and lung injury, but its role in liver and enteric damage after HS remains undefined. Therefore, the objective of this study was to evaluate the role of UA on liver and enteric injury after resuscitated HS. METHODS A murine model of resuscitated HS was treated during resuscitation with a recombinant uricase, a urate oxidase enzyme (rasburicase; Sanofi-Aventis, Canada Inc, Laval, Canada), to metabolize and reduce circulating UA. Biochemical analyses (liver enzymes, liver apoptotic, and inflammatory markers) were performed at 24 hours and 72 hours after HS. Physiological testing for enteric permeability and gut bacterial product translocation measurement (plasma endotoxin) were performed 72 hours after HS. In vitro, HT-29 cells were exposed to UA, and the expression of intercellular adhesion proteins (ZO-1, E-cadherin) was measured to evaluate the influence of UA on enteric permeability. RESULTS The addition of uricase to resuscitation significantly reduced circulating and liver UA levels after HS. It also prevented HS-induced hepatolysis and liver apoptotic/inflammatory mediators at 24 hours and 72 hours. Hemorrhagic shock–induced enteric hyperpermeability and endotoxemia were prevented with uricase. CONCLUSIONS After resuscitated HS, UA is an important mediator in liver and enteric injury. Uric acid represents a therapeutic target to minimize organ damage in polytrauma patients sustaining HS.fr
dcterms.isPartOfurn:ISSN:2163-0755fr
dcterms.isPartOfurn:ISSN:2163-0763fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposantJournal of Trauma and Acute Care Surgery -- 10.1097/TA.0000000000002868fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleJournal of trauma and acute care surgeryfr
oaire.citationVolume89fr
oaire.citationIssue6fr
oaire.citationStartPage1076fr
oaire.citationEndPage1084fr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.