Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/22657

Environnements virtuels émotionnellement intelligents

Thesis or Dissertation
Thumbnail
Benlamine_Mohamed-Sahbi_2019_these.pdf (7.533Mb)
2019-04 (degree granted: 2019-06-19)
Author(s)
Benlamine, Mohamed Sahbi
Advisor(s)
Frasson, Claude
Dufresne, Aude
Level
Doctoral
Discipline
Informatique
Keywords
  • Jeux vidéo
  • Reconnaissance des émotions
  • Motivation
  • Apprentissage machine
  • Adaptation dans les jeux
  • Capteurs physiologiques
  • Video games
  • Emotion recognition
  • Machine learning
  • Adaptation in games
  • Physiological sensors
  • Applied Sciences - Artificial Intelligence / Sciences appliqués et technologie - Intelligence artificielle (UMI : 0800)
Abstract(s)
Les émotions ont été étudiées sous différents angles dans le domaine de l'interaction homme-machine y compris les systèmes tutoriel intelligents, les réseaux sociaux, les plateformes d’apprentissage en ligne et le e-commerce. Beaucoup d’efforts en informatique affective sont investis pour intégrer la dimension émotionnelle dans les environnements virtuels (tel que les jeux vidéo, les jeux sérieux et les environnements de réalité virtuelle ou de réalité augmenté). Toutefois, les stratégies utilisées dans les jeux sont encore empiriques et se basent sur des modèles psychologiques et sociologiques du joueur : Courbe d’apprentissage, gestion de la difficulté, degré d’efficience dans l’évaluation des performances et de la motivation du joueur. Or cette analyse peut malmener le système dans la mesure où les critères sont parfois trop vagues ou ne représentent pas les réelles compétences du joueur, ni ses vraies difficultés. Étant donné que la stratégie d’intervention est très influencée par la précision de l’analyse et l’évaluation du joueur, de nouveaux moyens sont nécessaires afin d’améliorer les processus décisionnels dans les jeux et d’organiser les stratégies d’adaptation de façon optimale. Ce travail de recherche vise à construire une nouvelle approche pour l’évaluation et le suivi du joueur. L’approche permet une modélisation du joueur plus efficace et moins intrusive par l’intégration des états mentaux et affectifs obtenus à partir de senseurs physiologiques (signaux cérébraux, Activité électrodermale, …) ou/et instruments optiques (Webcam, traceur de regard, …). Les états affectifs et mentaux tels que les émotions de base (basées sur les expressions faciales), l’état d’engagement, de motivation et d’attention sont les plus visés dans cette recherche. Afin de soutenir l’adaptation dans les jeux, des modèles des émotions et de la motivation du joueur basé sur ces indicateurs mentaux et affectifs, ont été développés. Nous avons implémenté cette approche en développant un système sous forme d’une architecture modulaire qui permet l’adaptation dans les environnements virtuels selon les paramètres affectifs du joueur détectés en temps-réel par des techniques d’intelligence artificielle.
 
Emotions were studied from different angles in the field of human-machine interaction including intelligent tutorial systems, social networks, online learning platforms and e-commerce. Much effort in affective computing are invested to integrate the emotional dimension in virtual environments (such as video games, serious games and virtual reality environments or augmented reality). However, the strategies used in games are still empirical and are based on psychological and sociological models of the player: Learning Curve, trouble management, degree of efficiency in the evaluation of performance and motivation of the player. But this analysis can mislead the system to the extent that the criteria are sometimes too vague and do not represent the actual skills of the player, nor his real difficulties. Since the intervention strategy is influenced by the accuracy of the analysis and evaluation of the player, new ways are needed to improve decision-making in games and organizing adaptation strategies in optimal way. This research aims to build a new approach to the evaluation and monitoring of the player. The approach enables more effective and less intrusive player modeling through the integration of mental and emotional states obtained from physiological sensors (brain signals, electro-dermal activity, ...) or/and optical instruments (Webcam, eye-tracker, ...). The emotional and mental states such as basic emotions (based on facial expressions), the states of engagement, motivation and attention are the most targeted in this research. In order to support adaptation in games, models of emotions and motivation of the player based on these mental and emotional indicators, have been developed. We have implemented this approach by developing a system in the form of a modular architecture that allows adaptation in virtual environments according to the player's emotional parameters detected in real time by artificial intelligence methods.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [17174]
  • Faculté des arts et des sciences – Département d'informatique et de recherche opérationnelle - Thèses et mémoires [732]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS