Show item record

dc.contributor.advisorOwens, Robert Gwyn
dc.contributor.authorDe l'Isle, François
dc.date.accessioned2018-07-12T16:41:13Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2018-07-12T16:41:13Z
dc.date.issued2018-06-19
dc.date.submitted2017-12
dc.identifier.urihttp://hdl.handle.net/1866/20697
dc.subjectDifférences finiesfr
dc.subjectMéthode numériquefr
dc.subjectÉquation d'advection-diffusionfr
dc.subjectNavier-Stokesfr
dc.subjectConsistancefr
dc.subjectSuperconsistancefr
dc.subjectCouche limitefr
dc.subjectFinite differencesfr
dc.subjectNumerical methodfr
dc.subjectAdvection-diffusion equationfr
dc.subjectConsistencyfr
dc.subjectSuperconsistencyfr
dc.subjectBoundary layerfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleÉtude des discrétisations superconsistantes et application à la résolution numérique d’équations d’advection-diffusionfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractDans ce mémoire, nous reprenons les travaux de Fatone, Funaro et al. sur les discrétisations superconsistantes. Nous établissons d’abord une définition précise de la superconsistance et son lien avec la consistance. On élabore aussi une méthode explicite de construction de la discrétisation pour une vaste gamme d’opérateurs linéaires puis on applique la méthode sur l’opérateur d’advectiondiffusion que l’on retrouve dans l’équation du même nom et dans les équations de Navier-Stokes. Une étude analytique de l’opérateur discret résultant est d’abord faite puis des tests numériques sont effectués et analysés. Les problèmes résolus sont choisis tels que le terme diffusif est négligeable devant le terme advectif ce qui créée typiquement une couche limite dans la solution. Pour ces problèmes, les méthodes par différence finie centrée classiques risquent de générer des oscillations non désirées proche des couches limites alors que les solutions données par la méthode superconsistante s’avèrent beaucoup plus stables. Dans ce travail, on se limite à la dimension 1 et 2 car les mêmes simulations en dimension 3 demanderaient trop de ressources de calcul.fr
dcterms.abstractThis thesis develops the work of Fatone, Funaro et al. on superconsistent discretizations. We first give a precise definition of superconsistency and how it relates to consistency. We then suggest an explicit approach to constructing a superconsistent scheme from a linear operator and we apply the method to the advection-diffusion operator which we find, for example, in advective diffusive problems and the Navier Stokes equations. Both an analytical study and some numerical tests are provided. The choice of problems is made so that the diffusive term is small compared to the advective term. Solutions to such problems typically contain a boundary layer and classical centered finite difference methods may display some spurious oscillations in and near that layer. In contrast, solutions obtained with the superconsistent method are far more stable. In this work, only problems in one and two dimensions are treated since three dimensional problems would be too demanding on computational resources.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record