Abstract(s)
L’opérateur de Steklov est un opérateur pseudo-différentiel elliptique d’ordre 1. Il est connu que les valeurs propres de Steklov d’une surface ne dépendent asymptotiquement que des longueurs des composantes connexes de la frontière. Dans ce mémoire, on montre qu’asymptotiquement, les fonctions propres de Steklov ne se concentrent que sur une composante connexe de la frontière si aucun des rapports entre les longueurs des composantes de la frontière n’est finement approximable par une suite rationnelle.
The Steklov operator on a Riemannian manifold with boundary is an elliptic pseudodifferential operator of order one. It is known that the asymptotics of the Steklov spectrum of a surface is determined, up to a very small error, by the lengths of the connected components of the boundary. In this thesis, we focus on the asymptotic properties of Steklov eigenfunctions on surfaces. In particular, we show that if all the ratios between the lengths of the connected components of the boundary are irrational numbers not admitting fast approximation by rationals, then each high energy eigenfunction concentrates along a single boundary component.