Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de mathématiques et de statistique
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/20207

Concentration des fonctions propres de Steklov sur les composantes connexes de la frontière

Thesis or Dissertation
Thumbnail
Martineau_Joanie_2017_Memoire.pdf (4.527Mb)
2017-09 (degree granted: 2018-03-21)
Author(s)
Martineau, Joanie
Advisor(s)
Polterovich, Iosif
Level
Master's
Discipline
Mathématiques
Keywords
  • Pseudo-différentiel
  • Spectre
  • Steklov
  • Concentration
  • Frontière
  • Pseudodifferential
  • Spectrum
  • Boundary
  • Mathematics / Mathématiques (UMI : 0405)
Abstract(s)
L’opérateur de Steklov est un opérateur pseudo-différentiel elliptique d’ordre 1. Il est connu que les valeurs propres de Steklov d’une surface ne dépendent asymptotiquement que des longueurs des composantes connexes de la frontière. Dans ce mémoire, on montre qu’asymptotiquement, les fonctions propres de Steklov ne se concentrent que sur une composante connexe de la frontière si aucun des rapports entre les longueurs des composantes de la frontière n’est finement approximable par une suite rationnelle.
 
The Steklov operator on a Riemannian manifold with boundary is an elliptic pseudodifferential operator of order one. It is known that the asymptotics of the Steklov spectrum of a surface is determined, up to a very small error, by the lengths of the connected components of the boundary. In this thesis, we focus on the asymptotic properties of Steklov eigenfunctions on surfaces. In particular, we show that if all the ratios between the lengths of the connected components of the boundary are irrational numbers not admitting fast approximation by rationals, then each high energy eigenfunction concentrates along a single boundary component.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [17175]
  • Faculté des arts et des sciences – Département de mathématiques et de statistique – Thèses et mémoires [375]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS