Show item record

dc.contributor.advisorRémillard, Bruno
dc.contributor.authorSimard, Clarence
dc.date.accessioned2015-03-19T20:10:38Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2015-03-19T20:10:38Z
dc.date.issued2015-02-18
dc.date.submitted2014-10
dc.identifier.urihttp://hdl.handle.net/1866/11670
dc.subjectMathématiques financièresfr
dc.subjectModélisationfr
dc.subjectCarnet d'ordres limitesfr
dc.subjectArbitragefr
dc.subjectTarification d'optionsfr
dc.subjectCalcul stochastiquefr
dc.subjectCopulesfr
dc.subjectSéries temporellesfr
dc.subjectPrévisionsfr
dc.subjectFinancial mathematicsfr
dc.subjectModelingfr
dc.subjectLimit order bookfr
dc.subjectOption pricingfr
dc.subjectStochastic calculusfr
dc.subjectCopulasfr
dc.subjectTime seriesfr
dc.subjectPredictionsfr
dc.subject.otherMathematics / Mathématiques (UMI : 0405)fr
dc.titleModélisation du carnet d'ordres limites et prévision de séries temporellesfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineMathématiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractLe contenu de cette thèse est divisé de la façon suivante. Après un premier chapitre d’introduction, le Chapitre 2 est consacré à introduire aussi simplement que possible certaines des théories qui seront utilisées dans les deux premiers articles. Dans un premier temps, nous discuterons des points importants pour la construction de l’intégrale stochastique par rapport aux semimartingales avec paramètre spatial. Ensuite, nous décrirons les principaux résultats de la théorie de l’évaluation en monde neutre au risque et, finalement, nous donnerons une brève description d’une méthode d’optimisation connue sous le nom de dualité. Les Chapitres 3 et 4 traitent de la modélisation de l’illiquidité et font l’objet de deux articles. Le premier propose un modèle en temps continu pour la structure et le comportement du carnet d’ordres limites. Le comportement du portefeuille d’un investisseur utilisant des ordres de marché est déduit et des conditions permettant d’éliminer les possibilités d’arbitrages sont données. Grâce à la formule d’Itô généralisée il est aussi possible d’écrire la valeur du portefeuille comme une équation différentielle stochastique. Un exemple complet de modèle de marché est présenté de même qu’une méthode de calibrage. Dans le deuxième article, écrit en collaboration avec Bruno Rémillard, nous proposons un modèle similaire mais cette fois-ci en temps discret. La question de tarification des produits dérivés est étudiée et des solutions pour le prix des options européennes de vente et d’achat sont données sous forme explicite. Des conditions spécifiques à ce modèle qui permettent d’éliminer l’arbitrage sont aussi données. Grâce à la méthode duale, nous montrons qu’il est aussi possible d’écrire le prix des options européennes comme un problème d’optimisation d’une espérance sur en ensemble de mesures de probabilité. Le Chapitre 5 contient le troisième article de la thèse et porte sur un sujet différent. Dans cet article, aussi écrit en collaboration avec Bruno Rémillard, nous proposons une méthode de prévision des séries temporelles basée sur les copules multivariées. Afin de mieux comprendre le gain en performance que donne cette méthode, nous étudions à l’aide d’expériences numériques l’effet de la force et la structure de dépendance sur les prévisions. Puisque les copules permettent d’isoler la structure de dépendance et les distributions marginales, nous étudions l’impact de différentes distributions marginales sur la performance des prévisions. Finalement, nous étudions aussi l’effet des erreurs d’estimation sur la performance des prévisions. Dans tous les cas, nous comparons la performance des prévisions en utilisant des prévisions provenant d’une série bivariée et d’une série univariée, ce qui permet d’illustrer l’avantage de cette méthode. Dans un intérêt plus pratique, nous présentons une application complète sur des données financières.fr
dcterms.abstractThis thesis is structured as follows. After a first chapter of introduction, Chapter 2 exposes as simply as possible different notions that are going to be used in the two first papers. First, we discuss the main steps required to build stochastic integrals for semimartingales with space parameters. Secondly, we describe the main results of risk neutral evaluation theory and, finally, we give a short description of an optimization method known as duality. Chapters 3 and 4 consider the problem of modelling illiquidity, which is covered by two papers. The first one proposes a continuous time model for the structure and the dynamic of the limit order book. The dynamic of a portfolio for an investor using market orders is deduced and conditions to rule out arbitrage are given. With the help of Itô’s generalized formula, it is also possible to write the value of the portfolio as a stochastic differential equation. A complete example of market model along with a calibration method is also given. In the second paper, written in collaboration with Bruno Rémillard, we propose a similar model with discrete time trading. We study the problem of derivatives pricing and give explicit formulas for European option prices. Specific conditions to rule out arbitrage are also provided. Using the dual optimization method, we show that the price of European options can be written as the optimization of an expectation over a set of probability measures. Chapter 5 contained the third paper and studies a different topic. In this paper, also written with Bruno Rémillard, we propose a forecasting method for time series based on multivariate copulas. To provide a better understanding of the proposed method, with the help of numerical experiments, we study the effect of the strength and the structure of the different dependencies on predictions performance. Since copulas allow to isolate the dependence structure and marginal distributions, we study the impact of different marginal distributions on predictions performance. Finally, we also study the effect of estimation errors on the predictions. In all the cases, we compare the performance of predictions by using predictions based on a bivariate series and predictions based on a univariate series, which allows to illustrate the advantage of the proposed method. For practical matters, we provide a complete example of application on financial data.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record