Modelling causality in law = Modélisation de la causalité en droit
Thesis or Dissertation
2020-08 (degree granted: 2021-04-15)
Author(s)
Advisor(s)
Level
Master'sDiscipline
Droit des technologies de l'informationAbstract(s)
L'intérêt en apprentissage machine pour étudier la causalité s'est considérablement accru ces
dernières années. Cette approche est cependant encore peu répandue dans le domaine de
l’intelligence artificielle (IA) et du droit. Elle devrait l'être. L'approche associative actuelle
d’apprentissage machine révèle certaines limites que l'analyse causale peut surmonter. Cette
thèse vise à découvrir si les modèles causaux peuvent être utilisés en IA et droit.
Nous procédons à une brève revue sur le raisonnement et la causalité en science et en droit.
Traditionnellement, les cadres normatifs du raisonnement étaient la logique et la rationalité, mais
la théorie duale démontre que la prise de décision humaine dépend de nombreux facteurs qui
défient la rationalité. À ce titre, des statistiques et des probabilités étaient nécessaires pour
améliorer la prédiction des résultats décisionnels. En droit, les cadres de causalité ont été définis
par des décisions historiques, mais la plupart des modèles d’aujourd’hui de l'IA et droit
n'impliquent pas d'analyse causale. Nous fournissons un bref résumé de ces modèles, puis
appliquons le langage structurel de Judea Pearl et les définitions Halpern-Pearl de la causalité
pour modéliser quelques décisions juridiques canadiennes qui impliquent la causalité.
Les résultats suggèrent qu'il est non seulement possible d'utiliser des modèles de causalité
formels pour décrire les décisions juridiques, mais également utile car un schéma uniforme
élimine l'ambiguïté. De plus, les cadres de causalité sont utiles pour promouvoir la
responsabilisation et minimiser les biais. The machine learning community’s interest in causality has significantly increased in recent years.
This trend has not yet been made popular in AI & Law. It should be because the current
associative ML approach reveals certain limitations that causal analysis may overcome. This
research paper aims to discover whether formal causal frameworks can be used in AI & Law.
We proceed with a brief account of scholarship on reasoning and causality in science and in law.
Traditionally, normative frameworks for reasoning have been logic and rationality, but the dual
theory has shown that human decision-making depends on many factors that defy rationality. As
such, statistics and probability were called for to improve the prediction of decisional outcomes. In
law, causal frameworks have been defined by landmark decisions but most of the AI & Law
models today do not involve causal analysis. We provide a brief summary of these models and
then attempt to apply Judea Pearl’s structural language and the Halpern-Pearl definitions of
actual causality to model a few Canadian legal decisions that involve causality.
Results suggest that it is not only possible to use formal causal models to describe legal decisions,
but also useful because a uniform schema eliminates ambiguity. Also, causal frameworks are
helpful in promoting accountability and minimizing biases.
Collections
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.