Show item record

dc.contributor.authorEhlers, Lars
dc.date.accessioned2006-09-22T19:56:44Z
dc.date.available2006-09-22T19:56:44Z
dc.date.issued2005
dc.identifier.citationEHLERS, Lars, «Von Neumann-Morgenstern Stable Sets in Matching Problems», Cahier de recherche #2005-11, Département de sciences économiques, Université de Montréal, 2005, 27 pages.fr
dc.identifier.urihttp://hdl.handle.net/1866/540
dc.format.extent1346048 bytes
dc.format.mimetypeapplication/pdf
dc.publisherUniversité de Montréal. Département de sciences économiques.fr
dc.subjectMatching Problem
dc.subjectVon Neumann-Morgenstern Stable Sets
dc.subject[JEL:C78] Mathematical and Quantitative Methods - Game Theory and Bargaining Theory - Bargaining Theory; Matching Theoryen
dc.subject[JEL:J41] Labor and Demographic Economics - Particular Labor Markets - Contracts: Specific Human Capital, Matching Models, Efficiency Wage Models, and Internal Labor Marketsen
dc.subject[JEL:J44] Labor and Demographic Economics - Particular Labor Markets - Professional Labor Markets and Occupationsen
dc.subject[JEL:C78] Mathématiques et méthodes quantitatives - Théorie des jeux et négociation - Théorie de la négociation et du "matching"fr
dc.subject[JEL:J41] Démographie et économie du travail - Marchés particuliers de travail - Contrats: capital humain spécifique, modèles de matching, modèles du salaire d'efficacité et marchés internes du travailfr
dc.subject[JEL:J44] Démographie et économie du travail - Marchés particuliers de travail - Marché du travail pour les professionnelsfr
dc.titleVon Neumann-Morgenstern Stable Sets in Matching Problems
dc.typeArticle
dcterms.abstractThe following properties of the core of a one well-known: (i) the core is non-empty; (ii) the core is a lattice; and (iii) the set of unmatched agents is identical for any two matchings belonging to the core. The literature on two-sided matching focuses almost exclusively on the core and studies extensively its properties. Our main result is the following characterization of (von Neumann-Morgenstern) stable sets in one-to-one matching problem only if it is a maximal set satisfying the following properties : (a) the core is a subset of the set; (b) the set is a lattice; (c) the set of unmatched agents is identical for any two matchings belonging to the set. Furthermore, a set is a stable set if it is the unique maximal set satisfying properties (a), (b) and (c). We also show that our main result does not extend from one-to-one matching problems to many-to-one matching problems.
dcterms.bibliographicCitationCahier de recherche ; #2005-11
dcterms.isPartOfurn:ISSN:0709-9231
UdeM.VersionRioxxVersion publiée / Version of Record


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record