Show item record

dc.contributor.advisorMourez, Michael
dc.contributor.authorCharbonneau, Marie-Ève
dc.date.accessioned2012-09-18T16:09:30Z
dc.date.availableNO_RESTRICTIONen
dc.date.available2012-09-18T16:09:30Z
dc.date.issued2012-08-03
dc.date.submitted2012-04
dc.identifier.urihttp://hdl.handle.net/1866/8561
dc.subjectAutotransporteuren
dc.subjectAutotransporteren
dc.subjectSécrétionen
dc.subjectSecretionen
dc.subjectGlycosylationen
dc.subjectHeptoseen
dc.subjectClivage autocatalytiqueen
dc.subjectAutocatalytic cleavageen
dc.subjectAIDA-Ien
dc.subjectAahen
dc.subjectAdhésionen
dc.subjectAdhesionen
dc.subjectBiofilmen
dc.subjectEscherichia colien
dc.subject.otherBiology - Microbiology / Biologie - Microbiologie (UMI : 0410)en
dc.titleÉtude de la biogenèse de l'autotransporteur AIDA-I d'Escherichia colien
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineSciences vétérinairesen
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralen
etd.degree.namePh. D.en
dcterms.abstractLes autotransporteurs monomériques, appartenant au système de sécrétion de type V, correspondent à une famille importante de facteurs de virulence bactériens. Plusieurs fonctions, souvent essentielles pour le développement d’une infection ou pour le maintien et la survie des bactéries dans l’organisme hôte, ont été décrites pour cette famille de protéines. Malgré l’importance de ces protéines, notre connaissance de leur biogenèse et de leur mécanisme d’action demeure relativement limitée. L’autotransporteur AIDA-I, retrouvé chez diverses souches d’Escherichia coli, est un autotransporter multifonctionnel typique impliqué dans l’adhésion et l’invasion cellulaire ainsi que dans la formation de biofilm et d’agrégats bactériens. Les domaines extracellulaires d’autotransporteurs monomériques sont responsables de la fonctionnalité et possèdent pratiquement tous une structure caractéristique d’hélice β. Nous avons mené une étude de mutagenèse aléatoire avec AIDA-I afin de comprendre la base de la multifonctionnalité de cette protéine. Par cette approche, nous avons démontré que les domaines passagers de certains autotransporteurs possèdent une organisation modulaire, ce qui signifie qu’ils sont construits sous la forme de modules fonctionnels. Les domaines passagers d’autotransporteurs peuvent être clivés et relâchés dans le milieu extracellulaire. Toutefois, malgré la diversité des mécanismes de clivage existants, plusieurs protéines, telles qu’AIDA-I, sont clivées par un mécanisme qui demeure inconnu. En effectuant une renaturation in vitro d’AIDA-I, couplée avec une approche de mutagenèse dirigée, nous avons démontré que cette protéine se clive par un mécanisme autocatalytique qui implique deux acides aminés possédant un groupement carboxyle. Ces résultats ont permis la description d’un nouveau mécanisme de clivage pour la famille des autotransporteurs monomériques. Une des particularités d’AIDA-I est sa glycosylation par une heptosyltransférase spécifique nommée Aah. La glycosylation est un concept plutôt récent chez les bactéries et pour l’instant, très peu de protéines ont été décrites comme glycosylées chez E. coli. Nous avons démontré que Aah est le prototype pour une nouvelle famille de glycosyltransférases bactériennes retrouvées chez diverses espèces de protéobactéries. La glycosylation d’AIDA-I est une modification cytoplasmique et post-traductionnelle. De plus, Aah ne reconnaît pas une séquence primaire, mais plutôt un motif structural. Ces observations sont uniques chez les bactéries et permettent d’élargir nos connaissances sur la glycosylation chez les procaryotes. La glycosylation par Aah est essentielle pour la conformation d’AIDA-I et par conséquent pour sa capacité de permettre l’adhésion. Puisque plusieurs homologues d’Aah sont retrouvés à proximité d’autotransporteurs monomériques putatifs, cette famille de glycosyltranférases pourrait être importante, sinon essentielle, pour la biogenèse et/ou la fonction de nombreux autotransporteurs. En conclusion, les résultats présentés dans cette thèse apportent de nouvelles informations et permettent une meilleure compréhension de la biogenèse d’une des plus importantes familles de protéines sécrétées chez les bactéries Gram négatif.en
dcterms.abstractMonomeric autotransporters, a family of proteins that use the type V secretion pathway, are important mediators of virulence for many bacterial pathogens. Many functions important for host colonization and survival have been described for these proteins. Despite the recognized importance of this family of proteins, the mechanisms that are required for the biogenesis and functionality of monomeric autotransporters still remain poorly understood. The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is a classical multifunctional autotransporter protein that mediates bacterial aggregation and biofilm formation, as well as adhesion and invasion of cultured epithelial cells. Extracellular domains of autotransporters are responsible for the protein function and fold into a characteristic β-helical structure. We performed a random mutagenesis of the AIDA-I passenger domain in order to identify regions involved in the various phenotypes associated with the expression of this protein. Our study suggests that the passenger domain of AIDA-I possesses a modular organization, which means that AIDA-I is built with individual functional modules. Autotransporter passenger domains can be cleaved from the β-domain and released into the extracellular milieu. However, despite the fact that diverse cleavage mechanisms have been previously described, many autotransporters, like AIDA-I, are cleaved by an unknown mechanism. By monitoring the in vitro refolding and cleavage following by site-directed mutagenesis, we showed that AIDA-I processing is an autocatalytic event that involves two acidic residues. Our results unveil a new mechanism of auto-processing in the autotransporter family. AIDA-I is one of the few glycosylated proteins found in Escherichia coli. Glycosylation is mediated by a specific heptosyltransferase encoded by the aah gene, but little is known about the role of this modification and the mechanism involved. Our findings suggest that Aah represents the prototype of a new large family of bacterial protein O-glycosyltransferases that modify various substrates recognized through a structural motif. Furthermore, we showed that glycosylation occurs in the cytoplasm by a cotranslational mechanism. These observations are unique in bacteria and represent a significant advance in our comprehension of prokaryotic glycosylation. We also showed that glycosylation is required to ensure a normal conformation of AIDA-I and, as a consequence, is necessary for its cell-binding function. The finding that other autotransporters or large adhesin-encoding genes are linked to Aah homologue-encoding genes suggests that glycosylation may be important, if not essential, for the function of these proteins, as for AIDA-I. In conclusion, the results presented in this thesis bring new information about the autotransporter family and also give new insight into the mechanisms that are important for different aspects of the biogenesis of monomeric autotransporters.en
dcterms.languagefraen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.