Show item record

dc.contributor.advisorKmita, Marie
dc.contributor.authorScotti, Martina
dc.date.accessioned2012-05-14T18:12:33Z
dc.date.availableNO_RESTRICTIONen
dc.date.available2012-05-14T18:12:33Z
dc.date.issued2012-05-03
dc.date.submitted2011-12
dc.identifier.urihttp://hdl.handle.net/1866/7053
dc.subjectgènes Hoxen
dc.subjectallantoïdeen
dc.subjectplacentaen
dc.subjectmusclesen
dc.subjectrégulation transcriptionnelleen
dc.subjectHox genesen
dc.subjectallantoisen
dc.subjecttranscriptional regulationen
dc.subject.otherBiology - Genetics / Biologie - Génétique (UMI : 0369)en
dc.titleRole of the homeodomain transcription factor Hoxa13 in embryonic development and formation of extra-embryonic structuresen
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineBiologie moléculaireen
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralen
etd.degree.namePh. D.en
dcterms.abstractLa famille des gènes Hox code pour des facteurs de transcription connus pour leur contribution essentielle à l’élaboration de l’architecture du corps et ce, au sein de tout le règne animal. Au cours de l’évolution chez les vertébrés, les gènes Hox ont été redéfinis pour générer toute une variété de nouveaux tissus/organes. Souvent, cette diversification s’est effectuée via des changements quant au contrôle transcriptionnel des gènes Hox. Chez les mammifères, la fonction de Hoxa13 n’est pas restreinte qu’à l’embryon même, mais s’avère également essentielle pour le développement de la vascularisation fœtale au sein du labyrinthe placentaire, suggérant ainsi que sa fonction au sein de cette structure aurait accompagné l’émergence des espèces placentaires. Au chapitre 2, nous mettons en lumière le recrutement de deux autres gènes Hoxa, soient Hoxa10 et Hoxa11, au compartiment extra-embryonnaire. Nous démontrons que l’expression de Hoxa10, Hoxa11 et Hoxa13 est requise au sein de l’allantoïde, précurseur du cordon ombilical et du système vasculaire fœtal au sein du labyrinthe placentaire. De façon intéressante, nous avons découvert que l’expression des gènes Hoxa10-13 dans l’allantoïde n’est pas restreinte qu’aux mammifères placentaires, mais est également présente chez un vertébré non-placentaire, indiquant que le recrutement des ces gènes dans l’allantoïde précède fort probablement l’émergence des espèces placentaires. Nous avons généré des réarrangements génétiques et utilisé des essais transgéniques pour étudier les mécanismes régulant l’expression des gènes Hoxa dans l’allantoïde. Nous avons identifié un fragment intergénique de 50 kb capable d’induire l’expression d’un gène rapporteur dans l’allantoïde. Cependant, nous avons trouvé que le mécanisme de régulation contrôlant l’expression du gène Hoxa au sein du compartiment extra-embryonnaire est fort complexe et repose sur plus qu’un seul élément cis-régulateur. Au chapitre 3, nous avons utilisé la cartographie génétique du destin cellulaire pour évaluer la contribution globale des cellules exprimant Hoxa13 aux différentes structures embryonnaires. Plus particulièrement, nous avons examiné plus en détail l’analyse de la cartographie du destin cellulaire de Hoxa13 dans les pattes antérieures en développement. Nous avons pu déterminer que, dans le squelette du membre, tous les éléments squelettiques de l’autopode (main), à l’exception de quelques cellules dans les éléments carpiens les plus proximaux, proviennent des cellules exprimant Hoxa13. En contraste, nous avons découvert que, au sein du compartiment musculaire, les cellules exprimant Hoxa13 et leurs descendantes (Hoxa13lin+) s’étendent à des domaines plus proximaux du membre, où ils contribuent à générer la plupart des masses musculaires de l’avant-bras et, en partie, du triceps. De façon intéressante, nous avons découvert que les cellules exprimant Hoxa13 et leurs descendantes ne sont pas distribuées uniformément parmi les différents muscles. Au sein d’une même masse musculaire, les fibres avec une contribution Hoxa13lin+ différente peuvent être identifiées et les fibres avec une contribution semblable sont souvent regroupées ensemble. Ce résultat évoque la possibilité que Hoxa13 soit impliqué dans la mise en place de caractéristiques spécifiques des groupes musculaires, ou la mise en place de connections nerf-muscle. Prises dans leur ensemble, les données ici présentées permettent de mieux comprendre le rôle de Hoxa13 au sein des compartiments embryonnaires et extra-embryonnaires. Par ailleurs, nos résultats seront d’une importance primordiale pour soutenir les futures études visant à expliquer les mécanismes transcriptionnels soutenant la régulation des gènes Hoxa dans les tissus extra-embryonnaires.en
dcterms.abstractThe Hox family of transcription factors is well known for its key contribution in the establishment of the body architecture in all the animal kingdom. During vertebrate evolution, Hox genes have been co-opted to pattern a variety of novel tissues/organs. Often, this diversification has been achieved by changes in Hox transcriptional control. In mammals, Hoxa13 function is not restricted to the embryo proper, but is also essential for the proper development of the fetal vasculature within the placental labyrinth, suggesting that its function in this structure accompanied the emergence of placental species. In chapter 2, we report on the recruitment of two other Hoxa genes, namely Hoxa10 and Hoxa11, in the extra embryonic compartment. We show that Hoxa10, Hoxa11 and Hoxa13 expression is required in the allantois, the precursor of the umbilical cord and fetal vasculature within the placental labyrinth. Interestingly, we found that Hoxa10-13 gene expression in the allantois is not restricted to placental mammals, but is also present in a non-placental vertebrate, indicating that the recruitment of these genes in the allantois most likely predates the emergence of placental species. We generated genetic rearrangements and used transgenic assays to investigate the regulatory mechanisms underlying Hoxa gene expression in the allantois. We identified a 50 kb intergenic fragment able to drive reporter gene expression in the allantois. However, we found that the regulatory mechanism controlling Hoxa gene expression in the extra-embryonic compartment is very complex and relies on more than one cis-regulatory element. In chapter 3, we used genetic fate mapping to assess the overall contribution of Hoxa13 expressing cells to the different embryonic structures. In particular, we focused on Hoxa13 fate-mapping analysis in the developing forelimbs. We could determine that, in the limb skeleton, all autopod (hand) skeletal elements, with the exception of a few cells in the most proximal carpal elements, originate from Hoxa13 expressing cells. In contrast, we found that, in the muscle compartment, Hoxa13 expressing cells and their descendants extend to more proximal limb domains, where they contribute to most of the muscle masses of the forearm and, in part, to the triceps. Interestingly we found that Hoxa13 expressing cells and their descendants are not identically distributed among different muscles. Within the same muscular mass, fibres with different Hoxa13lin+ contribution can be identified, and fibers with similar contribution are often clustered together. This result raises the possibility that Hoxa13 might be involved in establishing specific features of muscle groups, or in establishing nerve-muscle connectivity. Altogether, the data presented herein provide a better understanding of the role of Hoxa13 in both the embryonic and extra-embryonic compartment. Moreover, our results will be of key importance for further investigations aimed at unravelling transcriptional mechanisms underlying Hoxa gene regulation in extra embryonic tissues.en
dcterms.languageengen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record