Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building*
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • FAS - Département de chimie
  • Thèses et mémoires - FAS - Département de chimie
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • FAS - Département de chimie
  • Thèses et mémoires - FAS - Département de chimie
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/5193

Synthèse de nouveaux matériaux conducteurs comportant des unités aromatiques conjuguées et analyse de leurs propriétés physico-chimiques

Electronic Thesis or Dissertation
Thumbnail
Dufresne_Stephane_2010_these.pdf (4.079Mb)
2010-12 (degree granted: 2011-06-02)
Author(s)
Dufresne, Stéphane
Advisor(s)
Skene, William G.
Level
Doctoral
Discipline
Chimie
Keywords
  • Chimie
  • Synthèse
  • Imines
  • Matériaux conducteurs
  • Électrochromisme
  • Diodes organiques électroluminescentes
  • Chemistry
  • Synthesis
  • Azomethines
  • Conducting materials
  • Electrochromism
  • Organic light emitting diodes
  • Chemistry - Polymer / Chimie - Polymères (UMI : 0495)
Abstract(s)
Les matériaux conjugués ont fait l’objet de beaucoup de recherches durant les dernières années. Les nouveaux matériaux présentent des propriétés intéressantes que ce soit au niveau optique, électrique, mécanique ou même les trois en même temps. La synthèse reste la difficulté principale dans la fabrication de dispositifs électroniques. Les méthodes utilisées pour y parvenir sont l’électropolymérisation, le couplage de Suzuki ou de Wittig. Ces techniques comportent encore de nombreuses contraintes et s’avèrent difficilement réalisables à grande échelle. Les thiophènes, les pyrroles et les furanes ont démontré une bonne conductibilité et une bande de conduction basse due à une conjugaison accrue. L’objectif ici est de synthétiser des oligomères principalement composés de thiophènes dans le but d’en caractériser les propriétés spectroscopiques, électrochimiques et de conduction. La synthèse est souvent l’étape délicate de la fabrication de matériaux conjugués. Nous présentons ici une méthode de synthèse simple par modules avec des unités hétérocycliques. Les modules complémentaires sont attachés par condensation entre un aldéhyde et une amine menant à la formation d’un lien robuste, l’azomethine. Les résultats des propriétés photophysiques et électrochimiques de ces matériaux conjugués seront présentés. En ayant recours à différents groupes électrodonneurs et électroaccepteurs, en variant le degré de conjugaison ou en utilisant différents hétérocycles, les propriétés spectroscopiques, électrochimiques et de bande de conduction peuvent être adaptées à volonté, ce qui en fait des matériaux aux propriétés modelables. Ces nouvelles molécules seront analysées pour en déceler les propriétés recherchées dans la fabrication d’OLED. Nous explorerons les domaines de l’oxidation electrochimique réversible et de la polymérisation menant à la fabrication de quelques prototypes simples.
 
Conjugated materials have received much attention recently as they show promise for industrial applications. These materials are interesting because of the many new possibilities for devices combining unique optical, electrical and mechanical properties. The synthesis is the major difficulty in the fabrication of electronic devices. Usual methods to do so are electropolymerisation, Suzuki or Wittig coupling. Those techniques are full of constraints and are difficult to scale-up. Thiophenes, pyrroles and furans demonstrated good conductibility and low band-gap due to increased conjugation. Our main goal is to synthesize oligomers made principally of thiophene to characterize their spectroscopic, electrochemical and conduction properties. Synthesis is the most important step in the making of conjugated material. A synthetically simple and modular route to novel conjugated material consisting of heterocyclic units is presented. These complementary modules are linked by condensing aldehydes and amines leading to robust azomethine bonds. The resulting photophysical and electrochemical properties of these conjugated materials will be presented. Through the use of different electron donor and acceptor groups, degree of conjugation or by using different heterocycles, the spectroscopic, electrochemical and band-gap properties can be tailored leading to materials with tunable properties. Those new molecules will be analysed to detect properties suitable for OLED fabrication. This presentation will also address the electrochemical reversible oxidation and polymerization of these compounds leading to the making of simple devices.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [13935]
  • Thèses et mémoires - FAS - Département de chimie [471]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS