Mécanismes de déformation de nanoparticules d’Au par irradiation ionique
Thesis or Dissertation
2009-12 (degree granted: 2011-02-03)
Author(s)
Advisor(s)
Level
DoctoralDiscipline
PhysiqueKeywords
- irradiation ionique
- nanoparticules
- Au
- pouvoir d’arrêt électronique
- résonance plasmon de surface
- élongation
- silice
- arséniure d’aluminium
- ion irradiation
- nanoparticles
- Au
- electronic stopping power
- surface plasmon resonance
- elongation
- silica
- aluminum arsenide
- Physics - Condensed Matter / Physique - Matière condensée (UMI : 0611)
Abstract(s)
Résumé
Dans la présente thèse, nous avons étudié la déformation anisotrope par bombardement ionique de nanoparticules d'or intégrées dans une matrice de silice amorphe ou d'arséniure d’aluminium cristallin. On s’est intéressé à la compréhension du mécanisme responsable de cette déformation pour lever toute ambigüité quant à l’explication de ce phénomène et pour avoir une interprétation consistante et unique.
Un procédé hybride combinant la pulvérisation et le dépôt chimique en phase vapeur assisté par plasma a été utilisé pour la fabrication de couches nanocomposites Au/SiO2 sur des substrats de silice fondue. Des structures à couches simples et multiples ont été obtenues. Le chauffage pendant ou après le dépôt active l’agglomération des atomes d’Au et par conséquent favorise la croissance des nanoparticules. Les nanocomposites Au/AlAs ont été obtenus par implantation ionique de couches d’AlAs suivie de recuit thermique rapide. Les échantillons des deux nanocomposites refroidis avec de l’azote liquide ont été irradiés avec des faisceaux de Cu, de Si, d’Au ou d’In d’énergie allant de 2 à 40 MeV, aux fluences s'étendant de 1×1013 à 4×1015 ions/cm2, en utilisant le Tandem ou le Tandetron.
Les propriétés structurales et morphologiques du nanocomposite Au/SiO2 sont extraites en utilisant des techniques optiques car la fréquence et la largeur de la résonance plasmon de surface dépendent de la forme et de la taille des nanoparticules, de leur concentration et de la distance qui les séparent ainsi que des propriétés diélectriques du matériau dans lequel les particules sont intégrées. La cristallinité de l’arséniure d’aluminium est étudiée par deux techniques: spectroscopie Raman et spectrométrie de rétrodiffusion Rutherford en mode canalisation (RBS/canalisation). La quantité d’Au dans les couches nanocomposites est déduite des résultats RBS. La distribution de taille et l’étude de la transformation de forme des nanoparticules métalliques dans les deux nanocomposites sont déterminées par microscopie électronique en transmission.
Les résultats obtenus dans le cadre de ce travail ont fait l’objet de trois articles de revue. La première publication montre la possibilité de manipuler la position spectrale et la largeur de la bande d’absorption des nanoparticules d’or dans les nanocomposites Au/SiO2 en modifiant leur structure (forme, taille et distance entre particules). Les nanoparticules d’Au obtenues sont presque sphériques. La bande d’absorption plasmon de surface (PS) correspondante aux particules distantes est située à 520 nm. Lorsque la distance entre les particules est réduite, l’interaction dipolaire augmente ce qui élargit la bande de PS et la déplace vers le rouge (602 nm). Après irradiation ionique, les nanoparticules sphériques se transforment en ellipsoïdes alignés suivant la direction du faisceau. La bande d’absorption se divise en deux bandes : transversale et longitudinale. La bande correspondante au petit axe (transversale) est décalée vers le bleu et celle correspondante au grand axe (longitudinale) est décalée vers le rouge indiquant l’élongation des particules d’Au dans la direction du faisceau. Le deuxième article est consacré au rôle crucial de la déformation plastique de la matrice et à l’importance de la mobilité des atomes métalliques dans la déformation anisotrope des nanoparticules d’Au dans les nanocomposites Au/SiO2. Nos mesures montrent qu'une valeur seuil de 2 keV/nm (dans le pouvoir d'arrêt électronique) est nécessaire pour la déformation des nanoparticules d'or. Cette valeur est proche de celle requise pour la déformation de la silice. La mobilité des atomes d’Au lors du passage d’ions est confirmée par le calcul de la température dans les traces ioniques. Le troisième papier traite la tentative de formation et de déformation des nanoparticules d’Au dans une matrice d’arséniure d’aluminium cristallin connue pour sa haute résistance à l’amorphisation et à la déformation sous bombardement ionique. Le résultat principal de ce dernier article confirme le rôle essentiel de la matrice. Il s'avère que la déformation anisotrope du matériau environnant est indispensable pour la déformation des nanoparticules d’or.
Les résultats expérimentaux mentionnés ci-haut et les calculs de températures dans les traces ioniques nous ont permis de proposer le scénario de déformation anisotrope des nanoparticules d’Au dans le nanocomposite Au/SiO2 suivant:
- Chaque ion traversant la silice fait fondre brièvement un cylindre étroit autour de sa trajectoire formant ainsi une trace latente. Ceci a été confirmé par la valeur seuil du pouvoir d’arrêt électronique.
- L’effet cumulatif des impacts de plusieurs ions conduit à la croissance anisotrope de la silice qui se contracte dans la direction du faisceau et s’allonge dans la direction perpendiculaire. Le modèle de chevauchement des traces ioniques (overlap en anglais) a été utilisé pour valider ce phénomène.
- La déformation de la silice génère des contraintes qui agissent sur les nanoparticules dans les plans perpendiculaires à la trajectoire de l’ion. Afin d’accommoder ces contraintes les nanoparticules d’Au se déforment dans la direction du faisceau.
- La déformation de l’or se produit lorsqu’il est traversé par un ion induisant la fusion d’un cylindre autour de sa trajectoire. La mobilité des atomes d’or a été confirmée par le calcul de la température équivalente à l’énergie déposée dans le matériau par les ions incidents.
Le scénario ci-haut est compatible avec nos données expérimentales obtenues dans le cas du nanocomposite Au/SiO2. Il est appuyé par le fait que les nanoparticules d’Au ne se déforment pas lorsqu’elles sont intégrées dans l’AlAs résistant à la déformation. Abstract
In the present thesis, we study the anisotropic deformation of gold nanoparticles embedded in amorphous silica or crystalline aluminum arsenide, under ion bombardment. We try to comprehend the mechanism responsible for this deformation and to remove any ambiguity related to the explanation of this phenomenon.
A hybrid process combining sputtering and plasma enhanced chemical vapour deposition was used to fabricate Au/SiO2 layers on fused silica substrates. Structures with single and multilayer were obtained. Heating during or after deposition activates the Au atom agglomeration and favours the growth of the nanoparticles. Also, a Au/AlAs nanocomposite was obtained by ion implantation of AlAs films, followed by rapid thermal annealing. The samples of the two nanocomposites, cooled with liquid nitrogen, were irradiated with 2 to 40 MeV Cu, Si, Au or In ion beams, at fluences ranging from 1×1013 to 4×1015 ions/cm2, using a Tandem or Tandetron accelerator.
The structural and morphological properties of the Au/SiO2 nanocomposite were extracted by optical means; the frequency and the width of surface plasmon resonance band depend on the nanoparticle shape and size, their concentration, the inter-particle distance and the dielectric properties of material in which the particles are embedded. The aluminum arsenide crystallinity was studied by two techniques: Raman spectroscopy and Rutherford backscattering spectrometry in channelling configuration (RBS/ channelling). The Au concentration in the nanocomposite layers was deducted from RBS results. The size distribution and metallic nanoparticles shape transformation in both nanocomposites were observed by electronic transmission microscopy.
The results obtained within the framework of this work are the subject of three journal papers. The first publication shows the possibility of manipulating the width and spectral position of the gold nanoparticle absorption band in Au/SiO2 nanocomposites by modifying their structure (form, size and inter-particle distance). The obtained Au nanoparticles are nearly spherical. The surface plasmon (PS) absorption band corresponding to the distant particles is located at 520 nm. After ion irradiation, the spherical nanoparticles transform into ellipsoids aligned along the ion beam. The absorption band splits into two bands: transversal and longitudinal. The band corresponding to the ellipsoids small axis (transversal) is blue-shifted and that corresponding to the long axis (longitudinal) is red-shifted indicating the elongation of particles in the beam direction. The second paper is consecrated to the crucial role of the plastic deformation of the matrix and to the importance of the metal atomic mobility in the anisotropic nanoparticles deformation in Au/SiO2 nanocomposites. Our measurements show that a threshold value of 2 keV/nm (electronic stopping power) is necessary for the deformation of Au nanoparticles. This value is close to that required for silica deformation. Mobility of the Au atoms at the time of the ion passage is confirmed by temperature calculation within the ionic track. The third paper treats the attempt of formation and deformation of Au nanoparticles in crystalline aluminum arsenide matrix known by its high resistance to amorphisation and deformation under ionic bombardment. The principal result of the last article confirms the essential role of the matrix. It proves that the anisotropic deformation of surrounding material is indispensable for gold nanoparticles deformation.
The experimental results mentioned above and temperature calculations within ionic tracks allowed us to propose the following anisotropic deformation scenario of Au nanoparticles embedded in Au/SiO2 nanocomposite:
- Each ion crossing the silica melts (very briefly) a narrow cylinder around its trajectory forming thus a latent track. This is consistent with the observed threshold value in the electronic stopping power.
- The cumulative effect of many separate ion impacts leads to the anisotropic growth of the silica matrix which contracts in the direction of the beam and elongates in the perpendicular direction. The overlap model of the ionic tracks was used to validate this phenomenon.
- The deformation of silica generates strains which act on the nanoparticles in the plane perpendicular to the ion trajectory. In order to accommodate these strains, the Au nanoparticles deform in the beam direction.
- The deformation of nanoparticles occurs each time an ion traverses the gold particle and melts a cylinder around its trajectory. The mobility of the gold atoms was confirmed by a calculation of the equivalent temperature from the deposited energy in the material by incident ions.
The scenario above is compatible with our experimental data obtained in the case of the Au/SiO2 nanocomposite. It is further supported by the fact that the Au nanoparticules do not deform when they are integrated in AlAs which is resistant to the deformation.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.