Show item record

dc.contributor.advisorVan De Werve, Gerald
dc.contributor.authorLi, Yazhou
dc.date.accessioned2024-07-23T19:11:13Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2024-07-23T19:11:13Z
dc.date.issued2000-11-02
dc.date.submitted2000-07
dc.identifier.urihttp://hdl.handle.net/1866/33651
dc.subjectGlucose-6-phosphatase (G6Pase)fr
dc.subjectGlycogénolysefr
dc.subjectNéoglucogénèsefr
dc.subjectHypoglycémiefr
dc.subjectDiabètefr
dc.subject.otherBiochemistry / Biochimie (UMI : 0487)fr
dc.titleRegulation of the expression of the two components of liver glucose-6-phosphatasefr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineBiochimiefr
etd.degree.grantorUniversité de Montréal
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractLa glucose-6-phosphatase (G6Pase) catalyse l'hydrolyse du glucose-6- phosphate (G6P), qui est l'étape terminale aussi bien de la glycogénolyse que de la néoglucogénèse. La localisation dans la membrane du réticulum endoplasmique de la G6Pase est suggérée sur des bases biochimiques et génétiques et cette enzyme est constituée de plusieurs composantes. À ce jour, deux composantes du système G6Pase ont été clonées, une sous-unité catalytique de masse moléculaire 36 kDa (p36) et un transporteur putatif de G6P de 46 kDa (p46). Des études topologiques indiquent que p36 et p46 sont très hydrophobiques, avec 9 et 10 domaines transmembranaires, respectivement. Deux modèles différents ont été proposés pour décrire le système complexe de la G6Pase, nommés le modèle de transport du substrat et le modèle conformationnel. La distribution tissulaire de p36 est essentiellement dans les organes néoglucogéniques comme le foie, le cortex rénal et l'intestin grêle, tandis que l'expression de p46 est plus étendue, étant présente dans la majorité des tissus et dans plusieurs lignées cellulaires. La glycogènose de type I (GSD-I) est une maladie autosomale récessive causée par une déficience en G6Pase, caractérisée par une hypoglycémie sévère et une accumulation excessive de glycogène hépatique. Des mutations dans le gène de p36 sont trouvées essentiellement chez les patients GSD-Ia, tandis que des mutations dans le gène de p46 expliquent la majorité des cas de GSD-Ib, le et Id, nouvellement qualifiés de "non a". Puisqu'une augmentation dans l'activité de la G6Pase est associée avec les deux types de diabète sucré et peut donc contribuer à l'augmentation de la production hépatique de glucose dans cette condition, p36 et p46 peuvent être considérés comme des gènes-candidats pour le diabète. La surexpression de p36 dans des hépatocytes et in vivo au moyen d'un adenovirus résulte en une augmentation de la néoglucogénèse et en une diminution du flux glycolytique et de la synthèse de glycogène, tandis que la surexpression de p36 dans les cellules d'insulinome INS-1 invalide la sécrétion d'insuline induite par le glucose. Il est connu que l'activité de la G6Pase est augmentée dans le foie de rats à jeun ou diabétiques. Le clonage des gènes de la G6Pase (qui incluent maintenant les gènes de p36 et p46) et la disponibilité de sondes d' ADNc ont permis d'examiner si les changements d'activité de la G6Pase dans ces conditions était dûe à des altérations dans l'expression de ces gènes ou était la conséquence de modifications post-traductionnelles de l'enzyme. Il a été rapporté que dans les cellules FAO, le niveau d'ARNm de p36 était augmenté par I' AMP cylique et les glucocorticoïdes, tandis que l'insuline avait un effet dominant négatif de suppression de ce gène. Dans ces mêmes cellules, des concentrations élevées de glucose (25 mM) étaient associées avec une quantité accrue d' ARNm de p36 et cette observation fut ultérieurement confirmé dans des hépatocytes en culture primaire et in vivo. L'expression du gène de p36 est donc règlé par des facteurs nutritionels et hormonaux. La régulation du gène de p46 nouvellement cloné, qui joue un rôle essentiel dans la G6Pase, n'a pas encore été exploré. Dans notre travail nous avons caractérisé l'expression de p46 en parallèle avec p36, dans le diabète expérimental, la déficience alimentaire en Pi, divers traitements hormonaux et différentes concentrations de glucose. Chez les rats rendus diabétiques par traitement à la streptozocine, nous avons trouvé une activité élevée de la G6Pase associée avec une augmentation de l'abondance de l 'ARNm de p46 et une augmentation similaire de la protéine p46 dans le foie, le rein et l'intestin, outre la stimulation de l'expression du gène de p36 documenté auparavent. Chez les rats nourris avec une diète déficiente en Pi, les niveaux relatifs d' ARNm de p36 et de p46 étaient augmentés ensemble dans le foie de concert avec une activité accrue de la G6Pase. Nous avons de plus étudié la régulation gènique de p36 et p46 dans les cellules HepG2, dont les concentrations de nutriments et d'hormones peuvent être aisément manipulés dans le milieu de culture. Nous avons trouvé que le glucose causait une augmentation dose­dépendante dans l'expression des gènes de p36 aussi bien que de p46 au niveau de l 'ARNm et des protéines. Cependant, des études dose-réponse de différentes hormones et agents affectant l'expression des gènes de p36 et p46 ont révélé des sensibilités différentes de ces deux composantes du système G6Pase. Nous montrons dans les cellules HepG2 qu'alors que l'insuline, à des concentrations physiologiques (0.01-10 nM), supprimait l 'ARNm de p36, celle de p46 n'était affectée que de 20-30% et réduite au plus à 50% avec 1 µM d'insuline. De plus, l'AMP cyclique, le glucagon, ainsi que la thapsigargine (un inhibiteur de la Ca2+-ATPase du RE) augmentaient l'ARNm de p36 aux concentrations 10-100 nM, sans affecter la transcription du gène de p46. Par contre, la dexamethasone (0.1-100 nM) augmentait similairement l'ARNm de p36 et de p46. Afin de caractériser ultérieurement l'impact métabolique d'une expression accrue de p46 et de comprendre la fonction de la protéine p46, nous avons surexprimé celle-ci au moyen d'un adenovirus recombinant dans des hépatocytes de rat en culture primaire. Les résultats montrent que la surexpression de p46 a pour conséquence d'induire l' ARNm de p36 et l'activité de la G6Pase. On observait également une diminution de la synthèse du glycogène et du flux glycolytique ainsi qu'une augmentation de la dégradation du glycogène. Puisque des mutations de p46 ont été trouvées chez des patients GSD-1 non a, qui ont par rapport aux patients GSD-1 a des symptômes additionnels comme une neutropénie et une dysfonction des neutrophiles et des monocytes, nous avons formulé l'hypothèse que p46 pourrait avoir d'autres fonctions que celle de contrôler p36, qui est absent des leucocytes. De plus, nous avons d'abord découvert dans une librairie d' ADNc de leucocytes humains et avons ensuite confirmé dans des échantillons sanguins la présence de quatre transcrits différents du gène de p46, dont trois ne sont pas présent dans le foie. Cette découverte supporte la possibilité que d'autres produits du gène de p46, possédant des fonctions distinctes, puissent être formés par épissage alternatif. En conclusion, nos résultats indiquent: (1) que dans le diabète insulinoprive, l'hyperglycémie, la déficience en insuline et l'augmentation de l 'AMP cyclique due à des hormones contrerégulatrices non opposées peuvent contribuer de façon indépendante l'un de l'autre à une expression accrue des gènes de p36 et p46. La surexpression de p46 avec un adenovirus recombinant résulte en des changements métaboliques semblables à ceux d'une surexpression de p36, indicant que des dérégulations aussi bien de p36 que de p46 peuvent être impliquées dans l'activité accrue de la G6Pase, menant à une production hépatique de glucose plus forte qui peut exacerber l'hyperglycemie du diabète; (2) que la régulation hormonale distincte de p36 et p46 indique que celles qui affectent seulement p36 coïncide avec des modifications connues de la production hépatique de glucose, tandis que celles qui affectent p36 et p46 sont consistantes avec une stimulation de la synthèse de glycogène; (3) que p46 pourrait être une protéine multifonctionnelle avec des propriétés tissulaires spécifiques. Dans les tissus où p36 est présent, comme dans le foie, p46 pourrait founir le G6P nécessaire à son hydrolyse par p36. Dans d'autres tissus, qui ne possèdent pas p36, p46 a probablement d'autres fonctions qui sont déficientes dans les leucocytes des patients GSD-lb.fr
dcterms.abstractGlucose-6-phosphatase (G6Pase) plays an important role in glucose metabolism by catalyzing the terminal step of both glycogenolysis and gluconeogenesis. Although G6Pase is proposed to be a multifunctional and multicomponent system residing in the membrane of endoplasmic reticulum, until now neither the structure of its components nor the function of each protein has been totally understood. So far two components of the G6Pase system have been cloned, including the G6Pase catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46). Genetie deficiency of G6Pase leads to glycogen storage disease type-1 (GSD-1), while mutations in p36 and p46 genes account for GSD-Ia and most of GSD-1 non a respectively. Furthermore, diabetes mellitus is associated with increased G6Pase activity, which may contribute to the enhanced hepatic glucose production. Previous studies have shown that p36 gene express10n 1s under nutritional and hormonal regulation. In this work, the gene regulation of newly cloned p46 was investigated and compared with that of p36 gene. We found that under the conditions like increased glucose concentration, dietary phosphate deprivation or streptozotocin-induced diabetes, p36 and p46 genes were similarly up-regulated. However, the sensitivities of these two genes to different hormones or reagents were found to be quite different as shown in HepG2 hepatoma cells. Insulin has dominant negative effects on bath p36 and p46 gene expression, but compared to p36, p46 gene has a much .lower sensitivity to insulin. Glucagon, cAMP and thapsigargin significantly increase p36 gene transcription but barely affect p46 gene, while glucocorticoids remarkably and sensitively induce bath genes. Based on the distinct hormonal regulation of p36 and p46 gene expression, their possible roles in glucose metabolism were proposed. We explored in two ways to study the yet unclear p46 function: (1) On the one hand, in order to study the p46 function in hepatic G6Pase system, we perfonned p46 overexpression in hepatocytes via recombinant adenovirus mediated gene transfer, which resulted in induced p36 transcription and increased G6Pase activity. In addition, overexpression of p46 led to significant metabolic impacts in primary hepatocytes, including decreased glycogen synthesis, increased glycogen degradation and decreased glycolysis; (2) On the other hand, we studied p46 gene transcription in leucocytes, where p36 is absent, and identified four different p46 transcripts, three of which are not present in liver. We hypothesize that mutated p46 gene might be responsible for neutropenia and neutrophil dysfunctions seen in GSD-Ib and le; p46 may bear other functions in leucocytes by differential mRNA splicing. In conclusion, we characterized the gene regulation of newly cloned p46 gene, investigated effects of adenovirus mediated overexpression of p46 on glucose and glycogen metabolisms and discovered different transcripts of p46 gene in leucocytes. Key works: glucose-6-phosphatase catalytic subunit; putative glucose-6- phosphate translocase; glucose; phosphate; hormones; gene regulation; overexpress10n.fr
dcterms.descriptionThèse numérisée par la Direction des bibliothèques de l'Université de Montréal.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.