Show item record

dc.contributor.advisorMajor, François
dc.contributor.authorLouis-Jeune, Caroline
dc.date.accessioned2009-11-04T16:28:34Z
dc.date.availableNO_RESTRICTIONen
dc.date.available2009-11-04T16:28:34Z
dc.date.issued2009-10-08
dc.date.submitted2009-04
dc.identifier.urihttp://hdl.handle.net/1866/3126
dc.subjectARNen
dc.subjectStructure secondaireen
dc.subjectMotifen
dc.subjectCycleen
dc.subjectRNAen
dc.subjectSecondary structureen
dc.subject.otherBiology - Bioinformatics / Biologie - Bio-informatique (UMI : 0715)en
dc.titleReprésentation et recherche de motifs cycliques et structuraux d’ARN connus dans les structures secondairesen
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineBio-informatiqueen
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sen
etd.degree.nameM. Sc.en
dcterms.abstractL'acide désoxyribonucléique (ADN) et l'acide ribonucléique (ARN) sont des polymères de nucléotides essentiels à la cellule. À l'inverse de l'ADN qui sert principalement à stocker l'information génétique, les ARN sont impliqués dans plusieurs processus métaboliques. Par exemple, ils transmettent l’information génétique codée dans l’ADN. Ils sont essentiels pour la maturation des autres ARN, la régulation de l’expression génétique, la prévention de la dégradation des chromosomes et le ciblage des protéines dans la cellule. La polyvalence fonctionnelle de l'ARN résulte de sa plus grande diversité structurale. Notre laboratoire a développé MC-Fold, un algorithme pour prédire la structure des ARN qu'on représente avec des graphes d'interactions inter-nucléotidiques. Les sommets de ces graphes représentent les nucléotides et les arêtes leurs interactions. Notre laboratoire a aussi observé qu'un petit ensemble de cycles d'interactions à lui seul définit la structure de n'importe quel motif d'ARN. La formation de ces cycles dépend de la séquence de nucléotides et MC-Fold détermine les cycles les plus probables étant donnée cette séquence. Mon projet de maîtrise a été, dans un premier temps, de définir une base de données des motifs structuraux et fonctionnels d'ARN, bdMotifs, en terme de ces cycles. Par la suite, j’ai implanté un algorithme, MC-Motifs, qui recherche ces motifs dans des graphes d'interactions et, entre autres, ceux générés par MC-Fold. Finalement, j’ai validé mon algorithme sur des ARN dont la structure est connue, tels que les ARN ribosomaux (ARNr) 5S, 16S et 23S, et l'ARN utilisé pour prédire la structure des riborégulateurs. Le mémoire est divisé en cinq chapitres. Le premier chapitre présente la structure chimique, les fonctions cellulaires de l'ARN et le repliement structural du polymère. Dans le deuxième chapitre, je décris la base de données bdMotifs. Dans le troisième chapitre, l’algorithme de recherche MC-Motifs est introduit. Le quatrième chapitre présente les résultats de la validation et des prédictions. Finalement, le dernier chapitre porte sur la discussion des résultats suivis d’une conclusion sur le travail.en
dcterms.abstractDeoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are polymers of nucleotides essential for the survival of the cell. Contrary to DNA, whose main role is to store genetic information, RNA is involved in multiple metabolic processes. For example, RNA is involved in the transfer of information from DNA to protein, the processing and modification of other RNAs, the regulation of gene expression, the end-maintenance of chromosomes, and the sorting of proteins within the cell. This functional versatility of RNA comes from its structural diversity. Our laboratory developed MC-Fold, an algorithm that predicts RNA structures by representing them with nucleotide interaction graphs. The nodes in these graphs represent the nucleotides, and the edges the interactions between them. Our laboratory also observed that a limited number of interaction cycles can define the structure of any RNA motif. The formation of these cycles is determined by the nucleotide sequence and MC-Fold determines the most likely cycles based on that sequence. In this Master Degree project, I first built a database of structural and functional RNA motifs, bdMotifs, based on their constituent cycles. Then, I implemented an algorithm, MC-Motifs, which detects motifs within interaction graphs generated either by MC-Fold or by any other method. Finally, I validated my algorithm on known RNA structures such as the 5S, 16S and 23S ribosomal RNA (rRNA) and predicted structure of riboswitches. The Master thesis is divided into five chapters. The first chapter presents the chemical structure of RNA, its cellular functions and the structural folding of the polymer. In the second chapter, the database bdMotifs is described. In the third chapter, the MC-Motifs algorithm is introduced. In the fourth chapter, I present the results of MC-Motifs. Finally, in the last chapter, I discuss theses results and I give a conclusion on the project.en
dcterms.languagefraen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record