Show item record

dc.contributor.advisorBegon, Mickaël
dc.contributor.advisorDuprey, Sonia
dc.contributor.authorAssila, Najoua
dc.date.accessioned2023-08-31T14:07:43Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2023-08-31T14:07:43Z
dc.date.issued2023-02-23
dc.date.submitted2022-09
dc.identifier.urihttp://hdl.handle.net/1866/28608
dc.subjectFauteuil roulant manuelfr
dc.subjectPropulsionfr
dc.subjectÉpaulefr
dc.subjectBiomécaniquefr
dc.subjectÉléments-finisfr
dc.subjectModèle neuro-musculo-squelettiquefr
dc.subjectSimulateur hybridefr
dc.subjectManual wheelchairfr
dc.subjectShoulderfr
dc.subjectBiomechanicsfr
dc.subjectFinite-elementsfr
dc.subjectNeuromusculoskeletal modelfr
dc.subjectHybrid simulatorfr
dc.subject.otherKinesiology / Kinésiologie (UMI : 0575)fr
dc.titleMobilité en fauteuil roulant : simulateur musculo-squelettique de l’épaule pour la compréhension des pathomécanismes associésfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineSciences de l'activité physiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractLe fauteuil roulant manuel (FRM) est nécessaire à la participation de ses usagers lors de la vie active. Cependant, le geste répétitif de propulsion est contraignant pour l’épaule, ce qui mène à l’apparition de lésions au niveau des tendons de la coiffe des rotateurs, impactant négativement la mobilité, l’autonomie et la qualité de vie de l’usager. Bien que plusieurs études aient essayé de caractériser la propulsion pour identifier des prédicteurs de douleurs, la complexité technique de la propulsion associée à celle anatomique de l’épaule entravent la compréhension des pathomécanismes associés à l’usage du FRM. Aussi, la variabilité des contextes de propulsion en milieu urbain (trottoirs, pentes, etc.) nécessite d’identifier les adaptations de l’usager pour mieux représenter son quotidien. L’objectif principal de cette thèse était d’approfondir notre compréhension des pathomécanismes de l’épaule associés à la propulsion en FRM. À cet égard, il était important de comprendre l’effet de la charge imposée par le FRM sur l’épaule à différentes échelles allant de la cinématique à la contrainte au sein des tissus mous, en passant par les forces articulaires. Nos objectifs spécifiques étaient de (1) Identifier les adaptations de la technique de propulsion à la présence d’un dévers, habileté représentative de la propulsion le long des trottoirs ; (2) Prédire des forces musculaires physiologiquement plausibles qui expriment le rôle des muscles dans la stabilité articulaire ; (3) Prédire le champ de déformations au niveau de la coiffe des rotateurs en utilisant un simulateur hybride de l’épaule, c’est-à-dire un modèle éléments-finis piloté par les excitations musculaires et la cinématique articulaire prédite par un modèle multi-corps rigides. (1) À partir des données cinématiques, cinétiques et électromyographiques de neuf utilisateurs de FRM, nous avons analysé l’adaptation de leurs techniques de propulsion sur un dévers. Si tous les participants ont réussi à se propulser, leurs techniques d’adaptation variaient en termes d’efficacité et de risque de blessures. Ce qui souligne l’importance de l’enseignement des habiletés en FRM. (2) Nous avons adapté une boite à outils de calibration de modèle neuro-musculo-squelettique pour exprimer les contraintes de stabilité gléno-humérale. Le modèle calibré a été ensuite implémenté pour prédire les forces musculaires et de réaction gléno-humérale. Cette approche nous a permis d’exprimer le rôle de la co-contraction musculaire dans la stabilité articulaire. Les forces de réaction prédites indiquaient que la propulsion est une tâche déstabilisante pour l’articulation gléno-humérale. Enfin, la comparaison des modèles calibrés de participants avec des capacités fonctionnelles variées a mis en en évidence les limites de la calibration numérique. (3) Un modèle éléments-finis de l’épaule avec muscles tridimensionnels a été développé pour simuler un cycle de propulsion. Les muscles ont été activés à partir des données électromyographiques expérimentales. La scapula et l’humérus ont été pilotés par la cinématique articulaire extraite d’un modèle multi-corps rigides. L’analyse des déformations de l’unité musculo-tendineuse du supra-épineux nous a permis de proposer des explications potentielles pour la prévalence des déchirures tendineuses chez les utilisateurs de FRM, particulièrement au niveau de la zone antérieure et interstitielle de ce tendon. Notre analyse semble rejoindre la littérature, soulignant que la répétitivité de la propulsion pourrait être plus contraignante que sa charge. Cette thèse a permis de développer des outils numériques de modélisation biomécanique, qui pourraient être implémentés pour l’étude d’autres pathologies qui touchent les muscles de la coiffe. Elle a aussi permis d’identifier des pathomécanismes potentiels de l’épaule associés à la propulsion en FRM. Plus d’études restent nécessaires pour valider nos résultats pour des populations plus larges et plus hétérogènes.fr
dcterms.abstractManual wheelchairs (MWC) are essential for their users’ participation in active life. However, the repetitive propulsion motion is straining on the shoulder, leading to the injury of the rotor cuff tendons, which negatively impacts the mobility, autonomy, and life quality of the users. While numerous studies tried to characterise propulsion to identify pain predictors, the technical and anatomical complexities of the propulsion and shoulder, respectively, hinder the understanding of the pathomecanisms associated with the MWC use. Additionally, the variability of the propulsion conditions within an urban environment (sidewalks, slopes, etc.) entails assessing users’ adaptations to better represent their daily life. The main objective of this thesis was to further our understanding of the shoulder pathomecanisms associated with MWC propulsion. For this purpose, it was important to understand the effect of the load imposed by MWC propulsion on the shoulder at different scales ranging from the kinematics to soft tissue stress through joint forces. Our specific objectives were to (1) Identify adaptations of the propulsion technique across a cross-slope, as this skill is representative of propulsion along sidewalks; (2) Predict physiologically plausible muscle forces that express the role of muscles in joint stability; (3) Predict the deformation field at the rotator cuff using a hybrid shoulder simulator, i.e., a finite element model driven by muscle excitations and joint kinematics predicted by a rigid multi-body model. (1) Using kinematic, kinetic and electromyographic data from nine MWC users, we analysed the adaption of their propulsion techniques across a cross-slope. While all participants propelled themselves, their adaptation techniques varied in terms of efficiency and injury risk. This highlighted the importance of training of MWC skills. (2) We adapted a neuromusculoskeletal calibration toolbox to express glenohumeral stability constraints. The calibrated models were then implemented to predict muscle and glenohumeral joint reaction forces. This approach allowed us to express the role of co-contraction in joint stability. The predicted joint reaction forces indicated that propulsion is a destabilizing task for the glenohumeral joint. Finally, the comparison of models calibrated to participants with varying functional abilities highlighted the limitations of numerical calibration. (3) A finite element model of the shoulder with three-dimensional muscles was developed to simulate a propulsion cycle. The muscles were activated using experimental electromyographic data. The scapula and humerus were driven by joint kinematics extracted from a rigid multi-body model. The analysis of the deformations of the supraspinatus muscle-tendon unit suggested potential explanations for the prevalence of tendon tears in MWC users, particularly in the anterior and interstitial zone of this tendon. Our analysis seems to agree with the literature, emphasizing that the high repetition of the propulsion cycle might be more taxing than its load. Through this thesis, we developed numeric tools for biomechanical modelling, which could be implemented for the study of other pathologies that affect the rotator cuff. We were also able to identify potential pathomecanisms of the shoulder that are associated with MWC propulsion. Mores studies are still needed to validate our results for larger and more heterogeneous populations.fr
dcterms.descriptionCotutelle entre l'Université de Montréal et l'Université Claude Bernard Lyon 1fr
dcterms.languagefrafr
UdeM.ORCIDAuteurThese0000-0002-8929-2526fr


Files in this item

Thumbnail
Video

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.