Engineering visible light emitting point defects in Zr-implanted polycrystalline AlN films
dc.contributor.author | Aghdaei, Azin | |
dc.contributor.author | Pandiyan, R. | |
dc.contributor.author | Bouraoui, Ilahi | |
dc.contributor.author | Chicoine, Martin | |
dc.contributor.author | El Gowini, M. | |
dc.contributor.author | Schiettekatte, François | |
dc.contributor.author | Frechette, Luc G. | |
dc.contributor.author | Morris, Denis | |
dc.date.accessioned | 2022-12-21T12:52:07Z | |
dc.date.available | NO_RESTRICTION | fr |
dc.date.available | 2022-12-21T12:52:07Z | |
dc.date.issued | 2020-12-22 | |
dc.identifier.uri | http://hdl.handle.net/1866/27300 | |
dc.publisher | American Institute of Physics | fr |
dc.subject | Absorption band | fr |
dc.subject | Raman spectroscopy | fr |
dc.subject | Annealing | fr |
dc.subject | Piezoelectric films | fr |
dc.subject | Ion implantation | fr |
dc.subject | Scanning electron microscopy | fr |
dc.subject | Polycrystalline material | fr |
dc.subject | Crystallographic defects | fr |
dc.subject | X-ray diffraction | fr |
dc.subject | Photoluminescence spectroscopy | fr |
dc.title | Engineering visible light emitting point defects in Zr-implanted polycrystalline AlN films | fr |
dc.type | Article | fr |
dc.contributor.affiliation | Université de Montréal. Faculté des arts et des sciences. Département de physique | fr |
dc.identifier.doi | 10.1063/5.0030221 | |
dcterms.abstract | We have investigated the impact of thermal annealing gaseous atmosphere of argon, nitrogen, and forming gas on the structural and optical properties of thin polycrystalline AlN films subjected to high-energy zirconium ions implantation. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy measurements show that the structural and morphological properties of the Zr-implanted AlN films depend on the annealing gaseous environment. Post-implantation annealing under argon atmosphere yields the lowest structured surface roughness with increased grain size. Photoluminescence spectroscopy revealed multiple point defects and defect complexes related emission bands in the visible range. A series of absorption bands have been observed using photoluminescence excitation spectroscopy. The origin of the emission or absorption bands is identified and attributed to various types of point defects and defect complexes, theoretically reported for AlN. New emission and absorption peaks at 1.7eV (730nm) and 2.6eV (466nm), respectively, have been identified and attributed to the (ZrAl–VN)0 defect complexes. | fr |
dcterms.isPartOf | urn:ISSN:0021-8979 | fr |
dcterms.isPartOf | urn:ISSN:1089-7550 | fr |
dcterms.language | eng | fr |
UdeM.ReferenceFournieParDeposant | https://doi.org/10.1063/5.0030221 | fr |
UdeM.VersionRioxx | Version acceptée / Accepted Manuscript | fr |
oaire.citationTitle | Journal of applied physics | fr |
oaire.citationVolume | 128 | fr |
Files in this item
This item appears in the following Collection(s)
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.