Show item record

dc.contributor.authorGalhardi, Juliana A.
dc.contributor.authorWang, Peiying
dc.contributor.authorBueno, Vinicius
dc.contributor.authorGhoshal, Subhasis
dc.contributor.authorGravel, Valérie
dc.contributor.authorWilkinson, Kevin James
dc.contributor.authorBayen, Stéphane
dc.date.accessioned2022-11-14T13:40:47Z
dc.date.availableMONTHS_WITHHELD:12fr
dc.date.available2022-11-14T13:40:47Z
dc.date.issued2022-08-18
dc.identifier.urihttp://hdl.handle.net/1866/27160
dc.publisherRoyal Society of Chemistryfr
dc.titleField evaluation of the potential effects of polymer and silica-based nanopesticides on strawberries and agricultural soilsfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté des arts et des sciences. Département de chimiefr
dc.identifier.doi10.1039/d2en00329e
dcterms.abstractPolymeric and SiO2 nanoparticles can be used as nanocarriers to improve the efficacy of pesticide delivery in agriculture. However, the environmental fate and potential risks of this type of nanopesticides in agroecosystems remain poorly understood. In this study, two separate active ingredients, azoxystrobin (AZOX) and bifenthrin (BFT), loaded into two different types of nanocarriers (Allosperse® polymeric nanoparticles and SiO2 nanoparticles), were applied to strawberry plants under realistic field conditions over two growing seasons. The pesticide concentration profiles in soil and plant tissues, plant growth and soil microorganisms were compared among treatments. Although the encapsulation appeared to reduce retention of the active ingredients (AI) to the soils, few of the sensitive indicators of ecosystem health showed any differences when compared to controls. Bioaccumulation of the AI by the strawberry plants and fruit was similar for classical and nano-applications of the AI. No significant differences were observed among the conventional, nanopesticide or control treatments in terms of fruit mass, number of flowers and leaves, or biomass. None of the pesticide formulations appeared to systematically affect soil enzyme activity. Finally, the soil microbial composition (Shannon indices, Principal Coordinate Analysis plots) and function (soil enzyme activity) only showed some transient, initial effects due to the pesticides, but did not distinguish among formulationsfr
dcterms.isPartOfurn:ISSN:2051-8153fr
dcterms.isPartOfurn:ISSN:2051-8161fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposantEnviron. Sci.: Nano, 2022, 9, 3833-3843; DOI: 10.1039/D2EN00329Efr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleEnvironmental Science. Nanofr
oaire.citationVolume9fr
oaire.citationStartPage3833fr
oaire.citationEndPage3843fr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.