Show item record

dc.contributor.authorMorel, Elise
dc.contributor.authorJreije, Ibrahim
dc.contributor.authorTetreault, Valerie
dc.contributor.authorHauser, Charles
dc.contributor.authorZerges, William
dc.contributor.authorWilkinson, Kevin James
dc.date.accessioned2022-11-07T13:36:34Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2022-11-07T13:36:34Z
dc.date.issued2020-05-18
dc.identifier.urihttp://hdl.handle.net/1866/27066
dc.publisherElsevierfr
dc.subjectCerium engineered nanoparticlesfr
dc.subjectCoatingsfr
dc.subjectTranscriptomic analysisfr
dc.subjectBioavailabilityfr
dc.subjectMicroalgaefr
dc.titleBiological impacts of Ce nanoparticles with different surface coatings as revealed by RNA-Seq in Chlamydomonas reinhardtiifr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté des arts et des sciences. Département de chimiefr
dc.identifier.doi10.1016/j.impact.2020.100228
dcterms.abstractIn order to better understand the risks of engineered nanoparticles (ENPs), it is necessary to determine their fate and biological effects under realistic exposure scenarios (e.g. low ENP concentrations). RNA-Seq was deployed to characterize the relative biological impacts of three small Ce ENPs (i.e. nominal size < 20 nm, 70 μg L−1 Ce), with different coating properties (i.e. uncoated, citrate or poly-acrylic acid coated), towards a unicellular freshwater microalga, Chlamydomonas reinhardtii. After 2 h exposition at pH 7.0, distinct differences in tran- scriptomic effects were observed when comparing ionic Ce and Ce ENPs. Notably, Ce ENPs specifically modu- lated mRNA levels of genes related to the ubiquitin-proteasome system and to flagella structure. Compared to control conditions, transcriptomic effects induced by the citrate coated Ce ENPs were rather limited, as only 23 genes were differentially expressed by this treatment (Log2FC > |1.0|, padj < 0.001); compared to uncoated Ce ENPs (688); polyacrylic coated Ce ENPs (315) or a similar concentration of ionic Ce (138). Somewhat surpris- ingly, similar changes in the algal transcriptomes were observed for treatments with poly-acrylic acid coated Ce ENPs (mainly Ce(III), little dissolution) and uncoated Ce ENPs (mainly Ce(IV) atoms, largely agglomerated) (Log2FC > |1.0|, padj < 0.001). For the moderate exposure concentrations examined here, toxicity appeared to be minimal for both ionic Ce and Ce ENPs. Nonetheless, an important number of genes could not be assigned to a biological pathway. The study gives important insights with respect to the role of particle surface coatings on biological effects, the mechanisms of interaction of Ce ENP with a green alga, in addition to identifying several useful transcriptomic biomarkers of Ce ENP exposure.fr
dcterms.isPartOfurn:ISSN:2452-0748fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposantNanoimpact, 2020, 19: 100228; DOI: 10.1016/j.impact.2020.100228fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleNanoImpactfr
oaire.citationVolume19fr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.