Show item record

dc.contributor.authorHaddad, Mohamed
dc.contributor.authorGaudreault, Roger
dc.contributor.authorSasseville, Gabriel
dc.contributor.authorNguyen, Phuong Trang
dc.contributor.authorWiebe, Hannah
dc.contributor.authorVan De Ven, Theo
dc.contributor.authorBourgault, Steve
dc.contributor.authorMousseau, Normand
dc.contributor.authorRamassamy, Charles
dc.date.accessioned2022-03-14T18:30:30Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2022-03-14T18:30:30Z
dc.date.issued2022-02-27
dc.identifier.urihttp://hdl.handle.net/1866/26365
dc.publisherMDPIfr
dc.rightsCe document est mis à disposition selon les termes de la Licence Creative Commons Paternité 4.0 International. / This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectSARS-CoV-2fr
dc.subjectCOVID-19fr
dc.subjectMolecular dynamicsfr
dc.subjectPolyphenolsfr
dc.subjectRBDfr
dc.subjectTMPRSS2fr
dc.subject3CLprofr
dc.titleMolecular interactions of tannic acid with proteins associated with SARS-CoV-2 infectivityfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté des arts et des sciences. Département de physiquefr
dc.identifier.doi10.3390/ijms23052643
dcterms.abstractThe overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-β-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson–Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.fr
dcterms.isPartOfurn:ISSN:1661-6596fr
dcterms.isPartOfurn:ISSN:1422-0067fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposanthttps://doi.org/10.3390/ijms23052643fr
UdeM.VersionRioxxVersion publiée / Version of Recordfr
oaire.citationTitleInternational journal of molecular sciencesfr
oaire.citationVolume23fr
oaire.citationIssue5fr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

Ce document est mis à disposition selon les termes de la Licence Creative Commons Paternité 4.0 International. / This work is licensed under a Creative Commons Attribution 4.0 International License.
Usage rights : Ce document est mis à disposition selon les termes de la Licence Creative Commons Paternité 4.0 International. / This work is licensed under a Creative Commons Attribution 4.0 International License.