⚠⚠⚠ Attention ⚠⚠⚠: Le dépôt institutionnel Papyrus sera indisponible le 2 décembre 2022 en raison de travaux majeurs d’électrification sur le campus. ⚠⚠⚠Please note ⚠⚠⚠: The Papyrus Institutional Repository will be unavailable on December 2, 2022 due to major electrification work on campus.

Show item record

dc.contributor.authorBen Salem, Jennifer
dc.contributor.authorNkambeu, Bruno
dc.contributor.authorArvanitis, Dina N.
dc.contributor.authorBeaudry, Francis
dc.subjectCaenorhabditis elegansfr
dc.subjectTransient receptor potential channelsfr
dc.subjectMass spectrometryfr
dc.subjectWnt signaling pathwayfr
dc.titleResiniferatoxin hampers the nocifensive response of Caenorhabditis elegans to noxious heat, and pathway analysis revealed that the Wnt signaling pathway is involvedfr
dc.contributor.affiliationUniversité de Montréal. Faculté de médecine vétérinairefr
dcterms.abstractResiniferatoxin (RTX) is a metabolite extracted from Euphorbia resinifera. RTX is a potent capsaicin analog with specific biological activities resulting from its agonist activity with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1). RTX has been examined as a pain reliever, and more recently, investigated for its ability to desensitize cardiac sensory fibers expressing TRPV1 to improve chronic heart failure (CHF) outcomes using validated animal models. Caenorhabditis elegans (C. elegans) expresses orthologs of vanilloid receptors activated by capsaicin, producing antinociceptive effects. Thus, we used C. elegans to characterize the antinociceptive properties and performed proteomic profiling to uncover specific signaling networks. After exposure to RTX, wild-type (N2) and mutant C. elegans were placed on petri dishes divided into quadrants for heat stimulation. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that RTX can hamper the nocifensive response of C. elegans to noxious heat (32 – 35 °C). The effect was reversed 6 h after RTX exposure. Additionally, we identified the RTX target, the C. elegans transient receptor potential channel OCR-3. The proteomics and pathway enrichment analysis results suggest that Wnt signaling is triggered by the agonistic effects of RTX on C. elegans vanilloid receptors.fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleNeurochemical researchfr

Files in this item

Microsoft Word

This item appears in the following Collection(s)

Show item record

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace