Show item record

dc.contributor.advisorArguin, Jean-François
dc.contributor.authorGagnon, Louis-Guillaume
dc.date.accessioned2021-02-12T14:44:27Z
dc.date.availableMONTHS_WITHHELD:6fr
dc.date.available2021-02-12T14:44:27Z
dc.date.issued2020-12-16
dc.date.submitted2020-07
dc.identifier.urihttp://hdl.handle.net/1866/24811
dc.subjectPhysique des particulesfr
dc.subjectParticle physicsfr
dc.subjectSupersymmetryfr
dc.subjectSupersymétriefr
dc.subjectLHCfr
dc.subjectATLASfr
dc.subjectApprentissage machinefr
dc.subjectMachine learningfr
dc.subjectApprentissage profondfr
dc.subjectDeep learningfr
dc.subjectNeural networksfr
dc.subjectRéseaux de neuronesfr
dc.subject.otherPhysics - Elementary Particles and High Energy / Physique - Particules (UMI : 0798)fr
dc.titleSearching for supersymmetry using deep learning with the ATLAS detectorfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplinePhysiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractLe Modèle Standard de la physique des particules (MS) est une théorie fondamentale de la nature dont la validité a été largement établie par diverses expériences. Par contre, quelques problèmes théoriques et expérimentaux subsistent, ce qui motive la recherche de théories alternatives. La Supersymétrie (SUSY), famille de théories dans laquelle une nouvelle particule est associée à chaque particules du MS, est une des théories ayant les meilleures motivations pour étendre la portée du modèle. Par exemple, plusieurs théories supersymétriques prédisent de nouvelles particules stables et interagissant seulement par la force faible, ce qui pourrait expliquer les observations astronomiques de la matière sombre. La découverte de SUSY représenterait aussi une importante étape dans le chemin vers une théorie unifiée de l'univers. Les recherches de supersymétrie sont au coeur du programme expérimental de la collaboration ATLAS, qui exploite un détecteur de particules installé au Grand Collisioneur de Hadrons (LHC) au CERN à Genève, mais à ce jours aucune preuve en faveur de la supersymétrie n'a été enregistrée par les présentes analyses, largement basées sur des techniques simples et bien comprises. Cette thèse documente l'implémentation d'une nouvelle approche à la recherche de particules basée sur l'apprentissage profond, utilisant seulement les quadri-impulsions comme variables discriminatoires; cette analyse utilise l'ensemble complet de données d'ATLAS enregistré en 2015-2018. Les problèmes de la naturalité du MS et de la matière sombre orientent la recherche vers les partenaires supersymétriques du gluon (le gluino), des quarks de troisième génération (stop et sbottom), ainsi que des bosons de gauge (le neutralino). Plusieurs techniques récentes sont employées, telles que l'utilisation directe des quadri-impulsions reconstruites à partir des données enregistrées par le détecteur ATLAS ainsi que la paramétrisation d'un réseau de neurone avec les masses des particules recherchées, ce qui permet d'atteindre une performance optimale quelle que soit l'hypothèse de masses. Cette méthode améliore la signification statistique par un facteur 85 par rapport au dernier résultat d'ATLAS pour certaines hypothèses de masses, et ce avec la même luminosité. Aucun excès signifif au-delà du Modèle Standard n'est observé. Les masses du gluino en deçà de 2.45 TeV et du neutralino en deça de 1.7 TeV sont exclues à un niveau de confiance de 95%, ce qui étend largement les limites précédentes sur deux modèles de productions de paires de gluinos faisant intervenir des stops et des sbottoms, respectivement.fr
dcterms.abstractThe Standard Model of particle physics (SM) is a fundamental theory of nature whose validity has been extensively confirmed by experiments. However, some theoretical and experimental problems subsist, which motivates searches for alternative theories to supersede it. Supersymmetry (SUSY), which associate new fundamental particles to each SM particle, is one of the best-motivated such theory and could solve some of the biggest outstanding problems with the SM. For example, many SUSY scenarios predict stable neutral particles that could explain observations of dark matter in the universe. The discovery of SUSY would also represent a huge step towards a unified theory of the universe. Searches for SUSY are at the heart of the experimental program of the ATLAS collaboration, which exploits a state-of-the-art particle detector installed at the Large Hadron Collider (LHC) at CERN in Geneva. The probability to observe many supersymmetric particles went up when the LHC ramped up its collision energy to 13~TeV, the highest ever achieved in laboratory, but so far no evidence for SUSY has been recorded by current searches, which are mostly based on well-known simple techniques such as counting experiments. This thesis documents the implementation of a novel deep learning-based approach using only the four-momenta of selected physics objects, and its application to the search for supersymmetric particles using the full ATLAS 2015-2018 dataset. Motivated by naturalness considerations as well as by the problem of dark matter, the search focuses on finding evidence for supersymmetric partners of the gluon (the gluino), third generation quarks (the stop and the sbottom), and gauge bosons (the neutralino). Many recently introduced physics-specific machine learning developments are employed, such as directly using detector-recorded energies and momenta of produced particles instead of first deriving a restricted set of physically motivated variables and parametrizing the classification model with the masses of the particles searched for, which allows optimal sensitivity for all mass hypothesis. This method improves the statistical significance of the search by up to 85 times that of the previous ATLAS analysis for some mass hypotheses, after accounting for the luminosity difference. No significant excesses above the SM background are recorded. Gluino masses below 2.45 TeV and neutralino masses below 1.7 TeV are excluded at the 95% confidence level, greatly increasing the previous limit on two simplified models of gluino pair production with off-shell stops and sbottoms, respectively.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace