Liens externes
  • Directories
  • Faculties
  • Libraries
  • Campus maps
  • Sites A to Z
  • My UdeM
    • Mon portail UdeM
    • My email
    • StudiUM
Dessin du pavillon Roger Gaudry/Sketch of Roger Gaudry Building
University Home pageUniversity Home pageUniversity Home page
Papyrus : Institutional Repository
Papyrus
Institutional Repository
Papyrus
    • français
    • English
  • English 
    • français
    • English
  • Login
  • English 
    • français
    • English
  • Login
View Item 
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de chimie
  • Faculté des arts et des sciences – Département de chimie – Thèses et mémoires
  • View Item
  •   Home
  • Faculté des arts et des sciences
  • Faculté des arts et des sciences – Département de chimie
  • Faculté des arts et des sciences – Département de chimie – Thèses et mémoires
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

My Account

To submit an item or subscribe to email alerts.
Login
New user?

Browse

All of PapyrusCommunities and CollectionsTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles indexThis CollectionTitlesIssue DatesAuthorsAdvisorsSubjectsDisciplinesAffiliationTitles index

Statistics

View Usage Statistics
Show metadata
Permalink: http://hdl.handle.net/1866/18415

The use of candida antarctica lipase B for the synthesis of macrocycles and polymers based on natural products

Thesis or Dissertation
Thumbnail
Champagne_Elyse_2016_memoire.pdf (4.651Mb)
2016-08 (degree granted: 2017-03-28)
Author(s)
Champagne, Élyse
Advisor(s)
Zhu, Xiaoxia
Level
Master's
Discipline
Chimie
Keywords
  • Lipases
  • Lactonization
  • Polymérisation par ouverture de cycle
  • Acides biliaires
  • Green chemistry
  • Chimie verte
  • Bile acids
  • Ring-opening polymerization
  • Chemistry - Polymer / Chimie - Polymères (UMI : 0495)
Abstract(s)
Les matériaux utilisés pour les applications biomédicales doivent être biocompatibles, et idéalement biodégradables. Les acides biliaires proviennent de sources naturelles et sont présents dans le corps humain. De plus, les polyetsers composés en partie de ces molécules possèdent des liens hydrolysables, une mémoire de forme thermique, et leur flexibilité peut être variée. Jusqu’à présent, la synthèse de ces matériaux exigeait l’utilisation de catalyseurs contenant des métaux de transition lourds pour l’étape de macrocyclisation. Puisque la polymérisation par ouverture de cycle nécessite des précurseurs cycliques, l’étape de lactonisation fut réalisée par voie enzymatique, au lieu d’utiliser des catalyseurs à plus grande toxicité. De plus, une seule étape enzymatique a pu remplacer deux étapes de synthèse organique, avec un rendement de 58 % et l’obtention d’un matériel transparent. Ces macrocycles nouvellement obtenus ont par la suite été polymérisés par ouverture de cycle, de façon similaire à la technique élaborée par notre groupe en 2013, tout en optimisant la durée de réaction. En 15 heures, une masse molaire relativement grande de 40 000 g/mol fut obtenue, tout en maintenant la dispersité sous 1.4 et la température de transition vitreuse à 12 °C. Pour valider le principe de cyclisation et de polymérisation enzymatique, les conditions optimales pour combiner l’acide thapsique et le 1,10-decanediol furent préalablement déterminées. Entre autres, la durée de réaction et la quantité d’enzyme nécessaire furent analysées. Les polymères semi-crystallins obtenus possèdent aussi de grandes masses molaires et de basses dispersités. Or, il est possible d’utiliser un enzyme à la fois pour la fermeture et pour l’ouverture de cycle de molécules rigides à cœur stéroïdal, telles que les acides biliaires. Cette synthèse permet la production de matériaux plus biocompatibles, tout en favorisant plusieurs principes de chimie verte.
 
Materials used in biomedical applications need to be biocompatible and ideally biodegradable. Bile acids are natural occurring compounds found in humans, and their polyesters possess hydrolyzable bonds, thermal shape memory and tunable flexibility. Until now, the synthetic pathway to obtain such materials required transition metal catalysts for the macrocyclization step, which is necessary to perform ring-opening polymerization (ROP). To circumvent the need for such catalysts, enzymatic ring closing was performed using lipases. Conveniently, two synthetic steps were replaced with a single step, using a renewable and reusable catalyst, with 58 % yield and a colorless product. The bile acid-containing macrocycles were then enzymatically polymerized as described in our previous work, while optimizing the reaction time. In 15 hours, relatively high Mw of 40 000 g/mol were obtained, while maintaining the dispersity ≤ 1.4 and a glass transition temperature of about 12 °C. As a proof-of-concept, conditions for the enzymatic ring closure of thapsic acid with 1,10-decanediol were determined beforehand. While optimizing for enzyme amount and reaction time, enzymatic ROP conditions to obtain di- and tetralactones from these monomers were established. The resulting semi-crystalline polymers also possess relatively high molecular weight and low dispersity. Hence, the use of lipases for both ring-closing and ring-opening reactions now shows potential for large, rigid moieties in addition to more mobile structures, using the same enzyme. This is a step towards the production of more biocompatible polymers, with a synthetic pathway that follows many green chemistry principles.
Collections
  • Thèses et mémoires électroniques de l’Université de Montréal [16808]
  • Faculté des arts et des sciences – Département de chimie – Thèses et mémoires [560]

DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS
 

 


DSpace software [version 5.8 XMLUI], copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Certificat SSL / SSL Certificate
les bibliothéques/UdeM
  • Emergency
  • Private life
  • Careers
  • My email
  • StudiUM
  • iTunes U
  • Contact us
  • Facebook
  • YouTube
  • Twitter
  • University RSS