Excitonic behaviour in polymeric semiconductors : the effect of morphology and composition in heterostructures
Thesis or Dissertation
2016-01 (degree granted: 2016-04-20)
Author(s)
Advisor(s)
Level
DoctoralDiscipline
PhysiqueKeywords
- Polymères semi-conducteurs
- Exciton
- Polaron
- Microstructure
- Modification d’interface
- Spectroscopie
- P3HT: ZnO
- MEH-PPV
- Photoluminescence
- Absorption photoinduite
- Polymeric semiconductors
- Exciton
- Polaron
- Microstructure
- Interface modification
- Spectroscopy
- P3HT: ZnO
- MEH-PPV
- Photoluminescence
- Photoinduced absorption
- Physics - Condensed Matter / Physique - Matière condensée (UMI : 0611)
Abstract(s)
La compréhension des interrelations entre la microstructure et les processus électroniques
dans les polymères semi-conducteurs est d’une importance primordiale pour
leur utilisation dans des hétérostructures volumiques. Dans cette thèse de doctorat, deux
systémes diffèrents sont étudiés ; chacun de ces systèmes représente une approche diffèrente
pour optimiser les matériaux en termes de leur microstructure et de leur capacité à
se mettre en ordre au niveau moléculaire.
Dans le premier système, j’ai effectué une analyse complète des principes de fonctionnement
d’une cellule photovoltaïque hybride à base des nanocristaux d’oxyde de
zinc (ZnO) et du poly (3-hexylthiophène) (P3HT) par absorption photoinduite en régime
quasi-stationnaire (PIA) et la spectroscopie PIA en pompage modulé dépendant de la
fréquence. L’interface entre le donneur (le polymère P3HT) et l’accepteur (les nanoparticules
de ZnO), où la génération de charges se produit, joue un rôle important dans
la performance des cellules photovoltaïques hybrides. Pour améliorer le mécanisme de
génération de charges du P3H: ZnO, il est indispensable de modifier l’interface entre
ses constituants. Nous avons démontré que la modification d’interface moléculaire avec
cis-bis (4, 40 - dicarboxy-2, 20bipyridine) ruthénium (II) (N3-dye) et a-Sexithiophen-2
yl-phosphonique (6TP) a améliorée le photocourant et la performance dans les cellules
P3HT: ZnO. Le 6TP et le N3 s’attachent à l’interface du ZnO, en augmentant ainsi l’aire
effective de la surface donneur :accepteur, ce qui contribue à une séparation de charge
accrue. De plus, le 6TP et le N3 réduisent la densité de pièges dans le ZnO, ce qui réduit
le taux de recombinaison des paires de charges.
Dans la deuxième partie, jai introduit une matrice hôte polymérique de polystyréne à
masse molaire ulra-élevée, qui se comporte comme un solide pour piéger et protéger une
solution de poly [2-méthoxy, 5- (2´-éthyl-hexoxy) -1,4-phénylènevinylène- PPV] (MEHPPV)
pour utilisation dans des dispositifs optoèlectroniques quantiques. Des travaux antérieurs
ont montré que MEH-PPV en solution subit une transition de conformation,
d’une conformation enroulé à haute température (phase bleue) à une conformation de
chaîne étendue à basse température (phase rouge). La conformation de la chaîne étendue de la solution MEH-PPV favorise les caractéristiques nécessaires à l’amélioration des
dispositifs optoélectroniques quantiques, mais la solution ne peut pas être incorporées
dans le dispositif. J’ai démontré que la caractéristique de la phase rouge du MEH-PPV
en solution se maintient dans une matrice hôte polymérique de polystyrène transformé de
masse molaire très élevée, qui se comporte comme un solide (gel de MEH-PPV/UHMW
PS), par le biais de la spectroscopie de photoluminescence (PL) dépendant de la température
(de 290K à 80 K). La phase rouge du gel MEH-PPV/UHMW PS se manifeste
par des largeurs de raie étroites et une intensité augmentée de la transition 0-0 de la
progression vibronique dans le spectre de PL ainsi qu’un petit décalage de Stokes entre
la PL et le spectre d’absorption à basse température.
Ces approches démontrent que la manipulation de la microstructure et des propriétés
électroniques des polymères semi-conducteurs ont un impact direct sur la performance
de dispositifs pour leurs développements technologiques continus. Understanding the interrelations between microstructure and electronic processes in
polymeric semiconductors is of great importance for their use in bulk heterostructures,
as the active part of power-converting devices such as organic photovoltaic cells or light
emitting diodes, as well as for quantum optoelectronics applications. In this doctoral
thesis, two different systems are investigated; each of these systems represents a different
approach to optimize materials in terms of microstructure and their ability to order
on the molecular level. In the first system, by means of quasi-steady-state photoinduced
absorption (PIA) and pump-modulation-frequency-dependent PIA spectroscopy, I performed
a comprehensive analysis of the working principles of a hybrid photovoltaic cell
based on nanocrystals of zinc oxide (ZnO) and poly(3-hexylthiophene) (P3HT). The interface
surface area between donor (polymer P3HT) and acceptor (ZnO nanocrystals),
where charge generation occurs, plays a significant role in the performance of the hybrid
photovoltaic cells. To improve the charge generation mechanism of P3HT: ZnO,
it is therefore essential to modify the P3HT: ZnO interface area. We demonstrated that
molecular interface modification with cis-bis(4,40-dicarboxy-2,20bipyridine) ruthenium
(II) (N3-dye) and a-Sexithiophen-2-yl-phosphonic Acid (6TP) as interface modifiers enhanced
the photocurrent and performance in P3HT: ZnO cells. 6TP and N3 attach to the
ZnO interface, thus increasing the donor:acceptor interface area that contributes to enhanced
charge separation. Furthermore, 6TP and N3 reduce the ZnO traps that reduces
recombination.
In the second part, I introduced a processed solid-like ultra-high-molecular-weight
polystyrene polymeric host matrix to trap and protect poly [2-methoxy, 5-(2’-ethylhexoxy)-
1,4-phenylene vinylene-PPV] (MEH-PPV) solution for use in quantum optoelectronic
devices. Previous work by others has shown that MEH-PPV in solution
undergoes a conformation transition from coiled conformation at high temperatures
(blue-phase) to a chain-extended conformation at low temperatures (red-phase). The
chain-extended conformation of MEH-PPV solution favours the characteristics needed
to improve quantum optoelectronic devices, however the solution cannot be incorporated into the device. We demonstrated that the red-phase feature of MEH-PPV in solution
maintains in a processed solid-like ultra-high-molecular-weight polystyrene polymeric
host matrix (MEH-PPV/UHMWPS gels), by means of temperature-dependent photoluminescence
(PL) spectroscopy (ranged from 290K down to 80 K). The red-phase of
MEH-PPV/UHMW PS gels manifest itself as narrow linewidths and enhanced 0-0 line
strength in the PL spectrum as well as a small stokes shifts between the PL and absorption
spectra at low temperatures. These approaches demonstrate that microstructure
manipulation and electronic properties of polymeric semiconductors have a direct impact
on the device performance for their continued technological developments.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.