Afficher la notice

dc.contributor.advisorCarrier, Jean-François
dc.contributor.advisorHeath, Emily
dc.contributor.advisorBedwani, Stéphane
dc.contributor.authorCousineau Daoust, Vincent
dc.date.accessioned2016-10-12T18:21:38Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2016-10-12T18:21:38Z
dc.date.issued2016-04-20
dc.date.submitted2015-08
dc.identifier.urihttp://hdl.handle.net/1866/15886
dc.subjectAccumulation de dosefr
dc.subject4Dfr
dc.subjectIMRTfr
dc.subjectCyberKnifefr
dc.subjectRecalage déformable d'imagefr
dc.subjectGestion du mouvementfr
dc.subjectMonte Carlofr
dc.subjectdefDOSXYZnrcfr
dc.subjectDose accumulationfr
dc.subjectDeformable image registrationfr
dc.subjectMotion managementfr
dc.subject.otherPhysics - Radiation / Physique - Radiation (UMI : 0756)fr
dc.titleAccumulation de dose à partir de champs de déformation 4D appliqués aux traitements au CyberKnife et à l'IMRTfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplinePhysiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractLe cancer pulmonaire est la principale cause de décès parmi tous les cancers au Canada. Le pronostic est généralement faible, de l'ordre de 15% de taux de survie après 5 ans. Les déplacements internes des structures anatomiques apportent une incertitude sur la précision des traitements en radio-oncologie, ce qui diminue leur efficacité. Dans cette optique, certaines techniques comme la radio-chirurgie et la radiothérapie par modulation de l'intensité (IMRT) visent à améliorer les résultats cliniques en ciblant davantage la tumeur. Ceci permet d'augmenter la dose reçue par les tissus cancéreux et de réduire celle administrée aux tissus sains avoisinants. Ce projet vise à mieux évaluer la dose réelle reçue pendant un traitement considérant une anatomie en mouvement. Pour ce faire, des plans de CyberKnife et d'IMRT sont recalculés en utilisant un algorithme Monte Carlo 4D de transport de particules qui permet d'effectuer de l'accumulation de dose dans une géométrie déformable. Un environnement de simulation a été développé afin de modéliser ces deux modalités pour comparer les distributions de doses standard et 4D. Les déformations dans le patient sont obtenues en utilisant un algorithme de recalage déformable d'image (DIR) entre les différentes phases respiratoire générées par le scan CT 4D. Ceci permet de conserver une correspondance de voxels à voxels entre la géométrie de référence et celles déformées. La DIR est calculée en utilisant la suite ANTs («Advanced Normalization Tools») et est basée sur des difféomorphismes. Une version modifiée de DOSXYZnrc de la suite EGSnrc, defDOSXYZnrc, est utilisée pour le transport de particule en 4D. Les résultats sont comparés à une planification standard afin de valider le modèle actuel qui constitue une approximation par rapport à une vraie accumulation de dose en 4D.fr
dcterms.abstractPulmonary cancer is the main cause of death amongst all cancers in Canada with a prognosis of about 15% survival rate in 5 years. The efficiency of radiotherapy treatments is lower when high displacements of the tumors are observed, mostly caused by intrafraction respiratory motion. Advanced techniques such as radiosurgery and intensity-modulated radiotherapy treatments (IMRT) are expected to provide better clinical results by delivering higher radiation doses to the tumor while sparing the surrounding healthy lung tissues. The goal of this project is to perform 4D Monte Carlo dose recalculations to assess the dosimetric impact of moving tumors in CyberKnife and IMRT treatments using dose accumulation in deforming anatomies. Scripts developed in-house were used to model both situations and to compare the Monte Carlo dose distributions with those obtained with standard clinical plans. Displacement vectors fields are obtained from a 4D CT data set and a deformable image registration (DIR) algorithm which allows a voxel-to-voxel correspondence between each respiratory phase. The DIR is computed by the Advanced Normalization Tools (ANTs) software and is mostly based on diffeormophisms. A modified version of DOSXYZnrc from EGSnrc software, defDOSXYZnrc, is used to transport radiation through non-linear geometries. These results are then compared to a typical 3D plan to determine whether or not the current planification is a good approximation of the true 4D dose calculation.fr
dcterms.languagefrafr


Fichier(s) constituant ce document

Vignette

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice